|
import streamlit as st |
|
import numpy as np |
|
import pandas as pd |
|
import pickle |
|
|
|
pipe = pickle.load(open('pipe.pkl','rb')) |
|
df = pickle.load(open('df.pkl','rb')) |
|
|
|
st.title("Mobile Price Prediction") |
|
|
|
|
|
brand = st.selectbox('Brand',df['Brand'].unique()) |
|
|
|
color = st.selectbox('color',df['Color'].unique()) |
|
|
|
|
|
|
|
display_size = st.number_input('Enter display Size') |
|
|
|
os = st.selectbox('OS',df['Operating System'].unique()) |
|
|
|
processor_core = st.selectbox('Cores',df['Processor Core'].unique()) |
|
|
|
Internal_Storage = st.selectbox('Internal Storage',[32,64,128,256,512,1024]) |
|
|
|
primary_camera = st.selectbox('Primary Camera',[5,8,12,16,32,48,50,108,200]) |
|
|
|
|
|
|
|
|
|
|
|
battery = st.selectbox('Battery Capacity In MAH',[2000,2500,3000,3500,4000,4250,4500,4750,5000,6000,7000]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
proce = st.selectbox('Processor Brand',df['Processor'].unique()) |
|
|
|
g = st.selectbox('5G',['Yes','No']) |
|
|
|
|
|
if st.button('Pridict'): |
|
if g=='Yes': |
|
gg = 1 |
|
else: |
|
gg = 0 |
|
query = pd.DataFrame([[brand,color,1,display_size,os,processor_core,Internal_Storage,primary_camera,1,1,battery,1,2400,1080,proce,gg]],columns=['Brand','Color','Touchscreen','Display_size_inches','Operating System','Processor Core','Internal Storage','Primary Camera','Secondary Camera Available','Wi-Fi','Battery Capacity','SmartPhone','X_res','Y_res','Processor','5G']) |
|
|
|
st.title(f"The Predicted Price RS:- {int(pipe.predict(query)[0])}") |
|
|
|
|
|
|