Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import torchaudio | |
from einops import rearrange | |
from stable_audio_tools import get_pretrained_model | |
from stable_audio_tools.inference.generation import generate_diffusion_cond | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Download model | |
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0") | |
sample_rate = model_config["sample_rate"] | |
sample_size = model_config["sample_size"] | |
model = model.to(device) | |
def generate_audio(prompt, bpm, duration): | |
# Set up text and timing conditioning | |
conditioning = [{ | |
"prompt": f"{bpm} BPM {prompt}", | |
"seconds_start": 0, | |
"seconds_total": duration | |
}] | |
# Generate stereo audio | |
output = generate_diffusion_cond( | |
model, | |
steps=100, | |
cfg_scale=7, | |
conditioning=conditioning, | |
sample_size=sample_size, | |
sigma_min=0.3, | |
sigma_max=500, | |
sampler_type="dpmpp-3m-sde", | |
device=device | |
) | |
# Rearrange audio batch to a single sequence | |
output = rearrange(output, "b d n -> d (b n)") | |
# Peak normalize, clip, convert to int16, and save to file | |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() | |
return sample_rate, output | |
inputs = [ | |
gr.inputs.Textbox(label="Prompt"), | |
gr.inputs.Number(label="BPM", default=128), | |
gr.inputs.Number(label="Duration (seconds)", default=30) | |
] | |
output = gr.outputs.Audio(type="numpy", label="Generated Audio") | |
gr.Interface( | |
fn=generate_audio, | |
inputs=inputs, | |
outputs=output, | |
title="Stable Audio Generation", | |
description="Generate audio using Stable Audio Open 1.0" | |
).launch() | |