Spaces:
Sleeping
Sleeping
# A Consistent and Efficient Evaluation Strategy for Attribution Methods | |
# https://arxiv.org/abs/2202.00449 | |
# Taken from https://raw.githubusercontent.com/tleemann/road_evaluation/main/imputations.py | |
# MIT License | |
# Copyright (c) 2022 Tobias Leemann | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# Implementations of our imputation models. | |
import torch | |
import numpy as np | |
from scipy.sparse import lil_matrix, csc_matrix | |
from scipy.sparse.linalg import spsolve | |
from typing import List, Callable | |
from pytorch_grad_cam.metrics.perturbation_confidence import PerturbationConfidenceMetric, \ | |
AveragerAcrossThresholds, \ | |
RemoveMostRelevantFirst, \ | |
RemoveLeastRelevantFirst | |
# The weights of the surrounding pixels | |
neighbors_weights = [((1, 1), 1 / 12), | |
((0, 1), 1 / 6), | |
((-1, 1), 1 / 12), | |
((1, -1), 1 / 12), | |
((0, -1), 1 / 6), | |
((-1, -1), 1 / 12), | |
((1, 0), 1 / 6), | |
((-1, 0), 1 / 6)] | |
class NoisyLinearImputer: | |
def __init__(self, | |
noise: float = 0.01, | |
weighting: List[float] = neighbors_weights): | |
""" | |
Noisy linear imputation. | |
noise: magnitude of noise to add (absolute, set to 0 for no noise) | |
weighting: Weights of the neighboring pixels in the computation. | |
List of tuples of (offset, weight) | |
""" | |
self.noise = noise | |
self.weighting = neighbors_weights | |
def add_offset_to_indices(indices, offset, mask_shape): | |
""" Add the corresponding offset to the indices. | |
Return new indices plus a valid bit-vector. """ | |
cord1 = indices % mask_shape[1] | |
cord0 = indices // mask_shape[1] | |
cord0 += offset[0] | |
cord1 += offset[1] | |
valid = ((cord0 < 0) | (cord1 < 0) | | |
(cord0 >= mask_shape[0]) | | |
(cord1 >= mask_shape[1])) | |
return ~valid, indices + offset[0] * mask_shape[1] + offset[1] | |
def setup_sparse_system(mask, img, neighbors_weights): | |
""" Vectorized version to set up the equation system. | |
mask: (H, W)-tensor of missing pixels. | |
Image: (H, W, C)-tensor of all values. | |
Return (N,N)-System matrix, (N,C)-Right hand side for each of the C channels. | |
""" | |
maskflt = mask.flatten() | |
imgflat = img.reshape((img.shape[0], -1)) | |
# Indices that are imputed in the flattened mask: | |
indices = np.argwhere(maskflt == 0).flatten() | |
coords_to_vidx = np.zeros(len(maskflt), dtype=int) | |
coords_to_vidx[indices] = np.arange(len(indices)) | |
numEquations = len(indices) | |
# System matrix: | |
A = lil_matrix((numEquations, numEquations)) | |
b = np.zeros((numEquations, img.shape[0])) | |
# Sum of weights assigned: | |
sum_neighbors = np.ones(numEquations) | |
for n in neighbors_weights: | |
offset, weight = n[0], n[1] | |
# Take out outliers | |
valid, new_coords = NoisyLinearImputer.add_offset_to_indices( | |
indices, offset, mask.shape) | |
valid_coords = new_coords[valid] | |
valid_ids = np.argwhere(valid == 1).flatten() | |
# Add values to the right hand-side | |
has_values_coords = valid_coords[maskflt[valid_coords] > 0.5] | |
has_values_ids = valid_ids[maskflt[valid_coords] > 0.5] | |
b[has_values_ids, :] -= weight * imgflat[:, has_values_coords].T | |
# Add weights to the system (left hand side) | |
# Find coordinates in the system. | |
has_no_values = valid_coords[maskflt[valid_coords] < 0.5] | |
variable_ids = coords_to_vidx[has_no_values] | |
has_no_values_ids = valid_ids[maskflt[valid_coords] < 0.5] | |
A[has_no_values_ids, variable_ids] = weight | |
# Reduce weight for invalid | |
sum_neighbors[np.argwhere(valid == 0).flatten()] = \ | |
sum_neighbors[np.argwhere(valid == 0).flatten()] - weight | |
A[np.arange(numEquations), np.arange(numEquations)] = -sum_neighbors | |
return A, b | |
def __call__(self, img: torch.Tensor, mask: torch.Tensor): | |
""" Our linear inputation scheme. """ | |
""" | |
This is the function to do the linear infilling | |
img: original image (C,H,W)-tensor; | |
mask: mask; (H,W)-tensor | |
""" | |
imgflt = img.reshape(img.shape[0], -1) | |
maskflt = mask.reshape(-1) | |
# Indices that need to be imputed. | |
indices_linear = np.argwhere(maskflt == 0).flatten() | |
# Set up sparse equation system, solve system. | |
A, b = NoisyLinearImputer.setup_sparse_system( | |
mask.numpy(), img.numpy(), neighbors_weights) | |
res = torch.tensor(spsolve(csc_matrix(A), b), dtype=torch.float) | |
# Fill the values with the solution of the system. | |
img_infill = imgflt.clone() | |
img_infill[:, indices_linear] = res.t() + self.noise * \ | |
torch.randn_like(res.t()) | |
return img_infill.reshape_as(img) | |
class ROADMostRelevantFirst(PerturbationConfidenceMetric): | |
def __init__(self, percentile=80): | |
super(ROADMostRelevantFirst, self).__init__( | |
RemoveMostRelevantFirst(percentile, NoisyLinearImputer())) | |
class ROADLeastRelevantFirst(PerturbationConfidenceMetric): | |
def __init__(self, percentile=20): | |
super(ROADLeastRelevantFirst, self).__init__( | |
RemoveLeastRelevantFirst(percentile, NoisyLinearImputer())) | |
class ROADMostRelevantFirstAverage(AveragerAcrossThresholds): | |
def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]): | |
super(ROADMostRelevantFirstAverage, self).__init__( | |
ROADMostRelevantFirst, percentiles) | |
class ROADLeastRelevantFirstAverage(AveragerAcrossThresholds): | |
def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]): | |
super(ROADLeastRelevantFirstAverage, self).__init__( | |
ROADLeastRelevantFirst, percentiles) | |
class ROADCombined: | |
def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]): | |
self.percentiles = percentiles | |
self.morf_averager = ROADMostRelevantFirstAverage(percentiles) | |
self.lerf_averager = ROADLeastRelevantFirstAverage(percentiles) | |
def __call__(self, | |
input_tensor: torch.Tensor, | |
cams: np.ndarray, | |
targets: List[Callable], | |
model: torch.nn.Module): | |
scores_lerf = self.lerf_averager(input_tensor, cams, targets, model) | |
scores_morf = self.morf_averager(input_tensor, cams, targets, model) | |
return (scores_lerf - scores_morf) / 2 | |