Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
from torch.autograd import Function | |
from pytorch_grad_cam.utils.find_layers import replace_all_layer_type_recursive | |
class GuidedBackpropReLU(Function): | |
def forward(self, input_img): | |
positive_mask = (input_img > 0).type_as(input_img) | |
output = torch.addcmul( | |
torch.zeros( | |
input_img.size()).type_as(input_img), | |
input_img, | |
positive_mask) | |
self.save_for_backward(input_img, output) | |
return output | |
def backward(self, grad_output): | |
input_img, output = self.saved_tensors | |
grad_input = None | |
positive_mask_1 = (input_img > 0).type_as(grad_output) | |
positive_mask_2 = (grad_output > 0).type_as(grad_output) | |
grad_input = torch.addcmul( | |
torch.zeros( | |
input_img.size()).type_as(input_img), | |
torch.addcmul( | |
torch.zeros( | |
input_img.size()).type_as(input_img), | |
grad_output, | |
positive_mask_1), | |
positive_mask_2) | |
return grad_input | |
class GuidedBackpropReLUasModule(torch.nn.Module): | |
def __init__(self): | |
super(GuidedBackpropReLUasModule, self).__init__() | |
def forward(self, input_img): | |
return GuidedBackpropReLU.apply(input_img) | |
class GuidedBackpropReLUModel: | |
def __init__(self, model, use_cuda): | |
self.model = model | |
self.model.eval() | |
self.cuda = use_cuda | |
if self.cuda: | |
self.model = self.model.cuda() | |
def forward(self, input_img): | |
return self.model(input_img) | |
def recursive_replace_relu_with_guidedrelu(self, module_top): | |
for idx, module in module_top._modules.items(): | |
self.recursive_replace_relu_with_guidedrelu(module) | |
if module.__class__.__name__ == 'ReLU': | |
module_top._modules[idx] = GuidedBackpropReLU.apply | |
print("b") | |
def recursive_replace_guidedrelu_with_relu(self, module_top): | |
try: | |
for idx, module in module_top._modules.items(): | |
self.recursive_replace_guidedrelu_with_relu(module) | |
if module == GuidedBackpropReLU.apply: | |
module_top._modules[idx] = torch.nn.ReLU() | |
except BaseException: | |
pass | |
def __call__(self, input_img, target_category=None): | |
replace_all_layer_type_recursive(self.model, | |
torch.nn.ReLU, | |
GuidedBackpropReLUasModule()) | |
if self.cuda: | |
input_img = input_img.cuda() | |
input_img = input_img.requires_grad_(True) | |
output = self.forward(input_img) | |
if target_category is None: | |
target_category = np.argmax(output.cpu().data.numpy()) | |
loss = output[0, target_category] | |
loss.backward(retain_graph=True) | |
output = input_img.grad.cpu().data.numpy() | |
output = output[0, :, :, :] | |
output = output.transpose((1, 2, 0)) | |
replace_all_layer_type_recursive(self.model, | |
GuidedBackpropReLUasModule, | |
torch.nn.ReLU()) | |
return output | |