hamzabouajila's picture
feat: enhance evaluation pipeline and error handling
34052ff
import json
import os
from dataclasses import dataclass
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a single result file for a given run."""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
try:
with open(json_filepath) as fp:
data = json.load(fp)
# Extract model information from the JSON data
full_model_name = data.get('model')
org_and_model = full_model_name.split("/", 1)
org = org_and_model[0]
model = org_and_model[1]
# Extract other metadata
precision_str = data.get('precision', 'Unknown')
precision = Precision.from_str(precision_str)
model_type = ModelType.from_str(data.get('model_type', 'Unknown'))
weight_type = WeightType.from_str(data.get('weight_type', 'Original'))
revision = data.get('revision', '')
date = data.get('submitted_at', '')
# Extract results and metadata
results = data.get('results', {})
license = data.get('license', '?')
likes = data.get('likes', 0)
num_params = data.get('params', 0)
architecture = data.get('architecture', 'Unknown')
# Check if the model is still on the hub
still_on_hub, _, _ = is_model_on_hub(full_model_name, revision=revision)
return EvalResult(
eval_name=f"{org}_{model}_{precision.value}",
full_model=full_model_name,
org=org,
model=model,
revision=revision,
results=results,
precision=precision,
model_type=model_type,
weight_type=weight_type,
architecture=architecture,
license=license,
likes=likes,
num_params=num_params,
date=date,
still_on_hub=still_on_hub
)
except Exception as e:
print(f"Error reading evaluation file {json_filepath}: {str(e)}")
return None
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# Calculate the average score for the leaderboard
scores = [v for k, v in self.results.items() if v is not None and k in [task.value.metric for task in Tasks]]
average = sum(scores) / len(scores) if scores else 0
AutoEvalColumnInstance = AutoEvalColumn()
data_dict = {
"eval_name": self.eval_name,
AutoEvalColumnInstance.precision.name: self.precision.value.name,
AutoEvalColumnInstance.model_type.name: self.model_type.value.name,
AutoEvalColumnInstance.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumnInstance.weight_type.name: self.weight_type.value.name,
AutoEvalColumnInstance.architecture.name: self.architecture,
AutoEvalColumnInstance.model.name: make_clickable_model(self.full_model),
AutoEvalColumnInstance.revision.name: self.revision,
AutoEvalColumnInstance.average.name: average,
AutoEvalColumnInstance.license.name: self.license,
AutoEvalColumnInstance.likes.name: self.likes,
AutoEvalColumnInstance.params.name: self.num_params,
AutoEvalColumnInstance.still_on_hub.name: self.still_on_hub,
}
# Dynamically map metric values to their corresponding column names
for task in Tasks:
task_metric = task.value.metric
task_col_name = task.value.col_name
data_dict[task_col_name] = self.results.get(task_metric)
return data_dict
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
# Recursively find all result files
for root, _, files in os.walk(results_path):
json_files = [f for f in files if f.endswith(".json")]
for file in json_files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = []
for model_result_filepath in model_result_filepaths:
try:
eval_result = EvalResult.init_from_json_file(model_result_filepath)
if eval_result is not None:
eval_results.append(eval_result)
else:
print(f"Skipping invalid evaluation file: {model_result_filepath}")
except Exception as e:
print(f"Error processing evaluation file {model_result_filepath}: {str(e)}")
continue
return eval_results