|
import json |
|
import os |
|
from dataclasses import dataclass |
|
|
|
|
|
from src.display.formatting import make_clickable_model |
|
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType |
|
from src.submission.check_validity import is_model_on_hub |
|
|
|
|
|
@dataclass |
|
class EvalResult: |
|
"""Represents one full evaluation. Built from a single result file for a given run.""" |
|
eval_name: str |
|
full_model: str |
|
org: str |
|
model: str |
|
revision: str |
|
results: dict |
|
precision: Precision = Precision.Unknown |
|
model_type: ModelType = ModelType.Unknown |
|
weight_type: WeightType = WeightType.Original |
|
architecture: str = "Unknown" |
|
license: str = "?" |
|
likes: int = 0 |
|
num_params: int = 0 |
|
date: str = "" |
|
still_on_hub: bool = False |
|
|
|
@classmethod |
|
def init_from_json_file(self, json_filepath): |
|
"""Inits the result from the specific model result file""" |
|
try: |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
|
|
full_model_name = data.get('model') |
|
org_and_model = full_model_name.split("/", 1) |
|
org = org_and_model[0] |
|
model = org_and_model[1] |
|
|
|
|
|
precision_str = data.get('precision', 'Unknown') |
|
precision = Precision.from_str(precision_str) |
|
model_type = ModelType.from_str(data.get('model_type', 'Unknown')) |
|
weight_type = WeightType.from_str(data.get('weight_type', 'Original')) |
|
revision = data.get('revision', '') |
|
date = data.get('submitted_at', '') |
|
|
|
|
|
results = data.get('results', {}) |
|
license = data.get('license', '?') |
|
likes = data.get('likes', 0) |
|
num_params = data.get('params', 0) |
|
architecture = data.get('architecture', 'Unknown') |
|
|
|
|
|
still_on_hub, _, _ = is_model_on_hub(full_model_name, revision=revision) |
|
|
|
return EvalResult( |
|
eval_name=f"{org}_{model}_{precision.value}", |
|
full_model=full_model_name, |
|
org=org, |
|
model=model, |
|
revision=revision, |
|
results=results, |
|
precision=precision, |
|
model_type=model_type, |
|
weight_type=weight_type, |
|
architecture=architecture, |
|
license=license, |
|
likes=likes, |
|
num_params=num_params, |
|
date=date, |
|
still_on_hub=still_on_hub |
|
) |
|
except Exception as e: |
|
print(f"Error reading evaluation file {json_filepath}: {str(e)}") |
|
return None |
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
|
|
scores = [v for k, v in self.results.items() if v is not None and k in [task.value.metric for task in Tasks]] |
|
average = sum(scores) / len(scores) if scores else 0 |
|
|
|
AutoEvalColumnInstance = AutoEvalColumn() |
|
data_dict = { |
|
"eval_name": self.eval_name, |
|
AutoEvalColumnInstance.precision.name: self.precision.value.name, |
|
AutoEvalColumnInstance.model_type.name: self.model_type.value.name, |
|
AutoEvalColumnInstance.model_type_symbol.name: self.model_type.value.symbol, |
|
AutoEvalColumnInstance.weight_type.name: self.weight_type.value.name, |
|
AutoEvalColumnInstance.architecture.name: self.architecture, |
|
AutoEvalColumnInstance.model.name: make_clickable_model(self.full_model), |
|
AutoEvalColumnInstance.revision.name: self.revision, |
|
AutoEvalColumnInstance.average.name: average, |
|
AutoEvalColumnInstance.license.name: self.license, |
|
AutoEvalColumnInstance.likes.name: self.likes, |
|
AutoEvalColumnInstance.params.name: self.num_params, |
|
AutoEvalColumnInstance.still_on_hub.name: self.still_on_hub, |
|
} |
|
|
|
|
|
for task in Tasks: |
|
task_metric = task.value.metric |
|
task_col_name = task.value.col_name |
|
data_dict[task_col_name] = self.results.get(task_metric) |
|
|
|
return data_dict |
|
|
|
|
|
|
|
|
|
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
for root, _, files in os.walk(results_path): |
|
json_files = [f for f in files if f.endswith(".json")] |
|
for file in json_files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
eval_results = [] |
|
for model_result_filepath in model_result_filepaths: |
|
try: |
|
eval_result = EvalResult.init_from_json_file(model_result_filepath) |
|
if eval_result is not None: |
|
eval_results.append(eval_result) |
|
else: |
|
print(f"Skipping invalid evaluation file: {model_result_filepath}") |
|
except Exception as e: |
|
print(f"Error processing evaluation file {model_result_filepath}: {str(e)}") |
|
continue |
|
|
|
return eval_results |
|
|