Spaces:
Build error
Build error
import gradio as gr | |
from PIL import Image | |
import IPython.display as display | |
import matplotlib.pyplot as plt | |
from base64 import b64encode | |
import numpy | |
import torch | |
import torch.nn.functional as F | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel | |
from huggingface_hub import notebook_login | |
# For video display: | |
from IPython.display import HTML | |
from matplotlib import pyplot as plt | |
from pathlib import Path | |
from PIL import Image | |
from torch import autocast | |
from torchvision import transforms as tfms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
import os | |
torch.manual_seed(1) | |
# Supress some unnecessary warnings when loading the CLIPTextModel | |
logging.set_verbosity_error() | |
# Set device | |
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1" | |
# Load the autoencoder model which will be used to decode the latents into image space. | |
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") | |
# Load the tokenizer and text encoder to tokenize and encode the text. | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
# The UNet model for generating the latents. | |
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") | |
# The noise scheduler | |
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) | |
# To the GPU we go! | |
vae = vae.to(torch_device) | |
text_encoder = text_encoder.to(torch_device) | |
unet = unet.to(torch_device); | |
def pil_to_latent(input_im): | |
# Single image -> single latent in a batch (so size 1, 4, 64, 64) | |
with torch.no_grad(): | |
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling | |
return 0.18215 * latent.latent_dist.sample() | |
def latents_to_pil(latents): | |
# bath of latents -> list of images | |
latents = (1 / 0.18215) * latents | |
with torch.no_grad(): | |
image = vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
# Prep Scheduler | |
def set_timesteps(scheduler, num_inference_steps): | |
scheduler.set_timesteps(num_inference_steps) | |
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925 | |
def blue_loss(images): | |
# How far are the blue channel values to 0.9: | |
error = torch.abs(images[:,2] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel | |
return error | |
def diversity_loss(images): | |
# Calculate the pairwise L2 distances between images | |
pairwise_distances = torch.norm(images.unsqueeze(1) - images.unsqueeze(0), p=2, dim=3) | |
# Encourage diversity by minimizing the mean distance | |
diversity_loss = torch.mean(pairwise_distances) | |
return diversity_loss | |
def red_loss(images): | |
# How far are the red channel values to a target value (e.g., 0.7): | |
error = torch.abs(images[:, 0] - 0.7).mean() # [:, 0] -> all images in batch, only the red channel | |
return error | |
def green_loss(images): | |
# How far are the green channel values to a target value (e.g., 0.8): | |
error = torch.abs(images[:, 1] - 0.8).mean() # [:, 1] -> all images in batch, only the green channel | |
return error | |
def saturation_loss(images, target_saturation=0.5): | |
# Calculate the saturation of each image (based on color intensity) | |
saturation = images.max(dim=3)[0] - images.min(dim=3)[0] | |
# Calculate the mean absolute difference from the target saturation | |
loss = torch.abs(saturation - target_saturation).mean() | |
return loss | |
def brightness_loss(images, target_brightness=0.6): | |
# Calculate the brightness of each image (e.g., average pixel intensity) | |
brightness = images.mean(dim=(2, 3)) | |
# Calculate the mean squared error from the target brightness | |
loss = (brightness - target_brightness).pow(2).mean() | |
return loss | |
def edge_detection_loss(images): | |
# Use Sobel filters to compute image gradients in x and y directions | |
gradient_x = F.conv2d(images, torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=images.dtype).view(1, 1, 3, 3), padding=1) | |
gradient_y = F.conv2d(images, torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=images.dtype).view(1, 1, 3, 3), padding=1) | |
# Calculate the magnitude of the gradients | |
gradient_magnitude = torch.sqrt(gradient_x**2 + gradient_y**2) | |
# Encourage a specific level of edge presence | |
loss = gradient_magnitude.mean() | |
return loss | |
def noise_regularization_loss(images, noise_std=0.1): | |
# Calculate the mean squared error of the image against noisy versions of itself | |
noisy_images = images + noise_std * torch.randn_like(images) | |
loss = torch.mean((images - noisy_images).pow(2)) | |
return loss | |
def image_generation(prompt, loss_fxn): | |
generated_image = [] | |
seed_list = [8, 16, 32, 64, 128] | |
for seed in seed_list: | |
latents_values = [] | |
height = 512 # default height of Stable Diffusion | |
width = 512 | |
num_inference_steps = 50 | |
guidance_scale = 8 # default width of Stable Diffusion | |
num_inference_steps = num_inference_steps | |
guidance_scale = guidance_scale | |
batch_size = 1 | |
blue_loss_scale = 200 #param | |
generator = torch.manual_seed(seed) | |
# Prep text | |
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
with torch.no_grad(): | |
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] | |
# And the uncond. input as before: | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
with torch.no_grad(): | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# Prep Scheduler | |
set_timesteps(scheduler, num_inference_steps) | |
# Prep latents | |
latents = torch.randn( | |
(batch_size, unet.in_channels, height // 8, width // 8), | |
generator=generator, | |
) | |
latents = latents.to(torch_device) | |
latents = latents * scheduler.init_noise_sigma | |
# Loop | |
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = scheduler.sigmas[i] | |
latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
# perform CFG | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
#### ADDITIONAL GUIDANCE ### | |
if i%5 == 0: | |
# Requires grad on the latents | |
latents = latents.detach().requires_grad_() | |
# Get the predicted x0: | |
latents_x0 = latents - sigma * noise_pred | |
#latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample | |
# Decode to image space | |
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) | |
# Calculate loss | |
loss = blue_loss(denoised_images) * blue_loss_scale | |
# Occasionally print it out | |
# if i%10==0: | |
# print(i, 'loss:', loss.item()) | |
# Get gradient | |
cond_grad = torch.autograd.grad(loss, latents)[0] | |
# Modify the latents based on this gradient | |
latents = latents.detach() - cond_grad * sigma**2 | |
# Now step with scheduler | |
latents = scheduler.step(noise_pred, t, latents).prev_sample | |
generated_image.append(latents_to_pil(latents)[0]) | |
latents_values.append(latents) | |
return generated_image, latents_values | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=image_generation, | |
inputs=[ | |
# gr.inputs.CheckboxGroup( | |
# label="Seed List", choices=[8, 32, 64, 128, 256], type="number" | |
# ), | |
gr.inputs.Textbox(label="Prompt Input"), | |
gr.inputs.Radio( | |
label="Loss Function", | |
choices=[ | |
"Diversity Loss", | |
"Saturation Loss", | |
"Brightness Loss", | |
"Edge Detection Loss", | |
"Noise Regularization Loss", | |
"Blue Loss", | |
"Red Loss", | |
"Green Loss" | |
], | |
), | |
], | |
outputs=gr.outputs.Image(type="pil", label="Generated Images"), | |
title="Stable Diffusion Guided by Loss Function Image Generation with Gradio", | |
description="Enter parameters to generate images using Stable Diffusion with optional loss functions.", | |
) | |
# Launch the Gradio interface | |
iface.launch() |