Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,6 @@ import os
|
|
| 5 |
import sys
|
| 6 |
import traceback
|
| 7 |
import subprocess
|
| 8 |
-
# A importação do SentenceTransformer (Bi-Encoder) não é mais necessária
|
| 9 |
from sentence_transformers import CrossEncoder
|
| 10 |
import csv
|
| 11 |
from collections import defaultdict
|
|
@@ -50,40 +49,35 @@ DATA_HAS_CHANGED = False
|
|
| 50 |
|
| 51 |
# --- Funções de Feedback ---
|
| 52 |
def normalize_text_for_feedback(text):
|
|
|
|
| 53 |
if pd.isna(text): return ""
|
| 54 |
try:
|
| 55 |
-
from enhanced_search_v2 import
|
| 56 |
-
return
|
| 57 |
except ImportError:
|
| 58 |
import unidecode
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
def load_user_feedback():
|
|
|
|
| 62 |
global USER_BEST_MATCHES_COUNTS
|
| 63 |
-
USER_BEST_MATCHES_COUNTS =
|
| 64 |
feedback_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), USER_FEEDBACK_FILE)
|
| 65 |
if not os.path.exists(feedback_file_path):
|
| 66 |
with open(feedback_file_path, 'w', newline='', encoding='utf-8') as f: csv.writer(f).writerow(FEEDBACK_CSV_COLUMNS)
|
| 67 |
return
|
| 68 |
try:
|
| 69 |
with open(feedback_file_path, 'r', encoding='utf-8') as f:
|
| 70 |
-
reader = csv.
|
| 71 |
-
try:
|
| 72 |
-
header = next(reader)
|
| 73 |
-
if [col.strip() for col in header] != FEEDBACK_CSV_COLUMNS:
|
| 74 |
-
print(f"--- [AVISO] Cabeçalho do {USER_FEEDBACK_FILE} incorreto.")
|
| 75 |
-
return
|
| 76 |
-
except StopIteration:
|
| 77 |
-
return
|
| 78 |
-
|
| 79 |
for row in reader:
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
USER_BEST_MATCHES_COUNTS[query_norm][tuss_code] = USER_BEST_MATCHES_COUNTS[query_norm].get(tuss_code, 0) + 1
|
| 86 |
-
print(f"--- [SUCESSO] Feedback de usuário carregado/sincronizado. ---")
|
| 87 |
except Exception as e: print(f"--- [ERRO] Falha ao carregar feedback: {e} ---"); traceback.print_exc()
|
| 88 |
|
| 89 |
# --- Execução de Scripts e Importações ---
|
|
@@ -99,7 +93,6 @@ app = Flask(__name__)
|
|
| 99 |
DF_ORIGINAL, DF_NORMALIZED, FUZZY_CORPUS, BM25_MODEL, DB_WORD_SET, doc_freq, tuss_map = (None, None, None, None, set(), {}, {})
|
| 100 |
CORRECTION_CORPUS, NORMALIZED_CORRECTION_CORPUS = [], []
|
| 101 |
PORTUGUESE_WORD_SET = set()
|
| 102 |
-
# O Bi-Encoder (SEMANTIC_MODEL) não é mais usado, então a variável foi removida.
|
| 103 |
CROSS_ENCODER_MODEL = None
|
| 104 |
|
| 105 |
try:
|
|
@@ -113,7 +106,6 @@ try:
|
|
| 113 |
PORTUGUESE_WORD_SET = load_general_dictionary(general_dict_path)
|
| 114 |
load_user_feedback()
|
| 115 |
|
| 116 |
-
# O carregamento do Bi-Encoder (SEMANTIC_MODEL) foi removido para economizar memória.
|
| 117 |
print("\n--- [SETUP] Carregando modelo Cross-Encoder (Etapa de reordenação)... ---")
|
| 118 |
cross_encoder_model_name = 'cross-encoder/ms-marco-MiniLM-L-6-v2'
|
| 119 |
CROSS_ENCODER_MODEL = CrossEncoder(cross_encoder_model_name, device='cpu')
|
|
@@ -135,19 +127,18 @@ def search():
|
|
| 135 |
data = request.get_json()
|
| 136 |
query = data.get('query', '').strip()
|
| 137 |
|
| 138 |
-
#
|
|
|
|
| 139 |
results = search_procedure_with_log(
|
| 140 |
-
query,
|
| 141 |
-
DF_ORIGINAL,
|
| 142 |
-
DF_NORMALIZED,
|
| 143 |
-
FUZZY_CORPUS,
|
| 144 |
-
(CORRECTION_CORPUS, NORMALIZED_CORRECTION_CORPUS),
|
| 145 |
-
PORTUGUESE_WORD_SET,
|
| 146 |
-
BM25_MODEL,
|
| 147 |
-
DB_WORD_SET,
|
| 148 |
-
doc_freq,
|
| 149 |
-
tuss_map,
|
| 150 |
-
limit_per_layer=15,
|
| 151 |
cross_encoder_model=CROSS_ENCODER_MODEL,
|
| 152 |
user_best_matches_counts=USER_BEST_MATCHES_COUNTS,
|
| 153 |
user_feedback_threshold=USER_FEEDBACK_THRESHOLD
|
|
@@ -184,7 +175,7 @@ def submit_feedback_route():
|
|
| 184 |
|
| 185 |
DATA_HAS_CHANGED = True
|
| 186 |
print(f"--- [DADOS] '{USER_FEEDBACK_FILE}' foi modificado. Commit agendado para o desligamento. ---")
|
| 187 |
-
|
| 188 |
load_user_feedback()
|
| 189 |
|
| 190 |
return jsonify({"status": "success", "message": "Feedback recebido!"}), 200
|
|
|
|
| 5 |
import sys
|
| 6 |
import traceback
|
| 7 |
import subprocess
|
|
|
|
| 8 |
from sentence_transformers import CrossEncoder
|
| 9 |
import csv
|
| 10 |
from collections import defaultdict
|
|
|
|
| 49 |
|
| 50 |
# --- Funções de Feedback ---
|
| 51 |
def normalize_text_for_feedback(text):
|
| 52 |
+
"""Função de normalização usada para consistência no arquivo de feedback."""
|
| 53 |
if pd.isna(text): return ""
|
| 54 |
try:
|
| 55 |
+
from enhanced_search_v2 import sanitize_text as es_sanitize_text
|
| 56 |
+
return es_sanitize_text(str(text).strip())
|
| 57 |
except ImportError:
|
| 58 |
import unidecode
|
| 59 |
+
# Fallback de higienização caso o import falhe
|
| 60 |
+
normalized = unidecode.unidecode(str(text).lower())
|
| 61 |
+
sanitized = re.sub(r'[^\w\s]', ' ', normalized)
|
| 62 |
+
return re.sub(r'\s+', ' ', sanitized).strip()
|
| 63 |
|
| 64 |
def load_user_feedback():
|
| 65 |
+
"""Carrega o arquivo de feedback e compila as contagens de 'melhor correspondência' por query."""
|
| 66 |
global USER_BEST_MATCHES_COUNTS
|
| 67 |
+
USER_BEST_MATCHES_COUNTS = defaultdict(lambda: defaultdict(int))
|
| 68 |
feedback_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), USER_FEEDBACK_FILE)
|
| 69 |
if not os.path.exists(feedback_file_path):
|
| 70 |
with open(feedback_file_path, 'w', newline='', encoding='utf-8') as f: csv.writer(f).writerow(FEEDBACK_CSV_COLUMNS)
|
| 71 |
return
|
| 72 |
try:
|
| 73 |
with open(feedback_file_path, 'r', encoding='utf-8') as f:
|
| 74 |
+
reader = csv.DictReader(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
for row in reader:
|
| 76 |
+
query_norm = row.get('query_normalized', '')
|
| 77 |
+
tuss_code = row.get('tuss_code_submitted', '')
|
| 78 |
+
if query_norm and tuss_code:
|
| 79 |
+
USER_BEST_MATCHES_COUNTS[query_norm][tuss_code] += 1
|
| 80 |
+
print(f"--- [SUCESSO] Feedback de usuário carregado. {len(USER_BEST_MATCHES_COUNTS)} queries com feedback. ---")
|
|
|
|
|
|
|
| 81 |
except Exception as e: print(f"--- [ERRO] Falha ao carregar feedback: {e} ---"); traceback.print_exc()
|
| 82 |
|
| 83 |
# --- Execução de Scripts e Importações ---
|
|
|
|
| 93 |
DF_ORIGINAL, DF_NORMALIZED, FUZZY_CORPUS, BM25_MODEL, DB_WORD_SET, doc_freq, tuss_map = (None, None, None, None, set(), {}, {})
|
| 94 |
CORRECTION_CORPUS, NORMALIZED_CORRECTION_CORPUS = [], []
|
| 95 |
PORTUGUESE_WORD_SET = set()
|
|
|
|
| 96 |
CROSS_ENCODER_MODEL = None
|
| 97 |
|
| 98 |
try:
|
|
|
|
| 106 |
PORTUGUESE_WORD_SET = load_general_dictionary(general_dict_path)
|
| 107 |
load_user_feedback()
|
| 108 |
|
|
|
|
| 109 |
print("\n--- [SETUP] Carregando modelo Cross-Encoder (Etapa de reordenação)... ---")
|
| 110 |
cross_encoder_model_name = 'cross-encoder/ms-marco-MiniLM-L-6-v2'
|
| 111 |
CROSS_ENCODER_MODEL = CrossEncoder(cross_encoder_model_name, device='cpu')
|
|
|
|
| 127 |
data = request.get_json()
|
| 128 |
query = data.get('query', '').strip()
|
| 129 |
|
| 130 |
+
# CORREÇÃO: A chamada da função foi atualizada para corresponder à nova assinatura
|
| 131 |
+
# em 'enhanced_search_v2.py', removendo os argumentos 'tuss_map' e 'limit_per_layer'.
|
| 132 |
results = search_procedure_with_log(
|
| 133 |
+
query=query,
|
| 134 |
+
df_original=DF_ORIGINAL,
|
| 135 |
+
df_normalized=DF_NORMALIZED,
|
| 136 |
+
fuzzy_search_corpus=FUZZY_CORPUS,
|
| 137 |
+
correction_corpus=(CORRECTION_CORPUS, NORMALIZED_CORRECTION_CORPUS),
|
| 138 |
+
portuguese_word_set=PORTUGUESE_WORD_SET,
|
| 139 |
+
bm25_model=BM25_MODEL,
|
| 140 |
+
db_word_set=DB_WORD_SET,
|
| 141 |
+
doc_freq=doc_freq,
|
|
|
|
|
|
|
| 142 |
cross_encoder_model=CROSS_ENCODER_MODEL,
|
| 143 |
user_best_matches_counts=USER_BEST_MATCHES_COUNTS,
|
| 144 |
user_feedback_threshold=USER_FEEDBACK_THRESHOLD
|
|
|
|
| 175 |
|
| 176 |
DATA_HAS_CHANGED = True
|
| 177 |
print(f"--- [DADOS] '{USER_FEEDBACK_FILE}' foi modificado. Commit agendado para o desligamento. ---")
|
| 178 |
+
|
| 179 |
load_user_feedback()
|
| 180 |
|
| 181 |
return jsonify({"status": "success", "message": "Feedback recebido!"}), 200
|