|
"""Calculates the Frechet Inception Distance (FID) to evalulate GANs |
|
|
|
The FID metric calculates the distance between two distributions of images. |
|
Typically, we have summary statistics (mean & covariance matrix) of one |
|
of these distributions, while the 2nd distribution is given by a GAN. |
|
|
|
When run as a stand-alone program, it compares the distribution of |
|
images that are stored as PNG/JPEG at a specified location with a |
|
distribution given by summary statistics (in pickle format). |
|
|
|
The FID is calculated by assuming that X_1 and X_2 are the activations of |
|
the pool_3 layer of the inception net for generated samples and real world |
|
samples respectively. |
|
|
|
See --help to see further details. |
|
|
|
Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead |
|
of Tensorflow |
|
|
|
Copyright 2018 Institute of Bioinformatics, JKU Linz |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); |
|
you may not use this file except in compliance with the License. |
|
You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
See the License for the specific language governing permissions and |
|
limitations under the License. |
|
""" |
|
import os |
|
import pathlib |
|
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as TF |
|
from PIL import Image |
|
from scipy import linalg |
|
from torch.nn.functional import adaptive_avg_pool2d |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision |
|
|
|
try: |
|
from tqdm import tqdm |
|
except ImportError: |
|
|
|
def tqdm(x): |
|
return x |
|
|
|
|
|
IMAGE_EXTENSIONS = {'bmp', 'jpg', 'jpeg', 'pgm', 'png', 'ppm', |
|
'tif', 'tiff', 'webp'} |
|
|
|
|
|
try: |
|
from torchvision.models.utils import load_state_dict_from_url |
|
except ImportError: |
|
from torch.utils.model_zoo import load_url as load_state_dict_from_url |
|
|
|
|
|
|
|
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' |
|
|
|
|
|
class InceptionV3(nn.Module): |
|
"""Pretrained InceptionV3 network returning feature maps""" |
|
|
|
|
|
|
|
DEFAULT_BLOCK_INDEX = 3 |
|
|
|
|
|
BLOCK_INDEX_BY_DIM = { |
|
64: 0, |
|
192: 1, |
|
768: 2, |
|
2048: 3 |
|
} |
|
|
|
def __init__(self, |
|
output_blocks=(DEFAULT_BLOCK_INDEX,), |
|
resize_input=True, |
|
normalize_input=True, |
|
requires_grad=False, |
|
use_fid_inception=True): |
|
"""Build pretrained InceptionV3 |
|
|
|
Parameters |
|
---------- |
|
output_blocks : list of int |
|
Indices of blocks to return features of. Possible values are: |
|
- 0: corresponds to output of first max pooling |
|
- 1: corresponds to output of second max pooling |
|
- 2: corresponds to output which is fed to aux classifier |
|
- 3: corresponds to output of final average pooling |
|
resize_input : bool |
|
If true, bilinearly resizes input to width and height 299 before |
|
feeding input to model. As the network without fully connected |
|
layers is fully convolutional, it should be able to handle inputs |
|
of arbitrary size, so resizing might not be strictly needed |
|
normalize_input : bool |
|
If true, scales the input from range (0, 1) to the range the |
|
pretrained Inception network expects, namely (-1, 1) |
|
requires_grad : bool |
|
If true, parameters of the model require gradients. Possibly useful |
|
for finetuning the network |
|
use_fid_inception : bool |
|
If true, uses the pretrained Inception model used in Tensorflow's |
|
FID implementation. If false, uses the pretrained Inception model |
|
available in torchvision. The FID Inception model has different |
|
weights and a slightly different structure from torchvision's |
|
Inception model. If you want to compute FID scores, you are |
|
strongly advised to set this parameter to true to get comparable |
|
results. |
|
""" |
|
super(InceptionV3, self).__init__() |
|
|
|
self.resize_input = resize_input |
|
self.normalize_input = normalize_input |
|
self.output_blocks = sorted(output_blocks) |
|
self.last_needed_block = max(output_blocks) |
|
|
|
assert self.last_needed_block <= 3, \ |
|
'Last possible output block index is 3' |
|
|
|
self.blocks = nn.ModuleList() |
|
|
|
if use_fid_inception: |
|
inception = fid_inception_v3() |
|
else: |
|
inception = _inception_v3(weights='DEFAULT') |
|
|
|
|
|
block0 = [ |
|
inception.Conv2d_1a_3x3, |
|
inception.Conv2d_2a_3x3, |
|
inception.Conv2d_2b_3x3, |
|
nn.MaxPool2d(kernel_size=3, stride=2) |
|
] |
|
self.blocks.append(nn.Sequential(*block0)) |
|
|
|
|
|
if self.last_needed_block >= 1: |
|
block1 = [ |
|
inception.Conv2d_3b_1x1, |
|
inception.Conv2d_4a_3x3, |
|
nn.MaxPool2d(kernel_size=3, stride=2) |
|
] |
|
self.blocks.append(nn.Sequential(*block1)) |
|
|
|
|
|
if self.last_needed_block >= 2: |
|
block2 = [ |
|
inception.Mixed_5b, |
|
inception.Mixed_5c, |
|
inception.Mixed_5d, |
|
inception.Mixed_6a, |
|
inception.Mixed_6b, |
|
inception.Mixed_6c, |
|
inception.Mixed_6d, |
|
inception.Mixed_6e, |
|
] |
|
self.blocks.append(nn.Sequential(*block2)) |
|
|
|
|
|
if self.last_needed_block >= 3: |
|
block3 = [ |
|
inception.Mixed_7a, |
|
inception.Mixed_7b, |
|
inception.Mixed_7c, |
|
nn.AdaptiveAvgPool2d(output_size=(1, 1)) |
|
] |
|
self.blocks.append(nn.Sequential(*block3)) |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = requires_grad |
|
|
|
def forward(self, inp): |
|
"""Get Inception feature maps |
|
|
|
Parameters |
|
---------- |
|
inp : torch.autograd.Variable |
|
Input tensor of shape Bx3xHxW. Values are expected to be in |
|
range (0, 1) |
|
|
|
Returns |
|
------- |
|
List of torch.autograd.Variable, corresponding to the selected output |
|
block, sorted ascending by index |
|
""" |
|
outp = [] |
|
x = inp |
|
|
|
if self.resize_input: |
|
x = F.interpolate(x, |
|
size=(299, 299), |
|
mode='bilinear', |
|
align_corners=False) |
|
|
|
if self.normalize_input: |
|
x = 2 * x - 1 |
|
|
|
for idx, block in enumerate(self.blocks): |
|
x = block(x) |
|
if idx in self.output_blocks: |
|
outp.append(x) |
|
|
|
if idx == self.last_needed_block: |
|
break |
|
|
|
return outp |
|
|
|
|
|
def _inception_v3(*args, **kwargs): |
|
"""Wraps `torchvision.models.inception_v3`""" |
|
try: |
|
version = tuple(map(int, torchvision.__version__.split('.')[:2])) |
|
except ValueError: |
|
|
|
version = (0,) |
|
|
|
|
|
|
|
if version >= (0, 6): |
|
kwargs['init_weights'] = False |
|
|
|
|
|
|
|
if version < (0, 13) and 'weights' in kwargs: |
|
if kwargs['weights'] == 'DEFAULT': |
|
kwargs['pretrained'] = True |
|
elif kwargs['weights'] is None: |
|
kwargs['pretrained'] = False |
|
else: |
|
raise ValueError( |
|
'weights=={} not supported in torchvision {}'.format( |
|
kwargs['weights'], torchvision.__version__ |
|
) |
|
) |
|
del kwargs['weights'] |
|
|
|
return torchvision.models.inception_v3(*args, **kwargs) |
|
|
|
|
|
def fid_inception_v3(): |
|
"""Build pretrained Inception model for FID computation |
|
|
|
The Inception model for FID computation uses a different set of weights |
|
and has a slightly different structure than torchvision's Inception. |
|
|
|
This method first constructs torchvision's Inception and then patches the |
|
necessary parts that are different in the FID Inception model. |
|
""" |
|
inception = _inception_v3(num_classes=1008, |
|
aux_logits=False, |
|
weights=None) |
|
inception.Mixed_5b = FIDInceptionA(192, pool_features=32) |
|
inception.Mixed_5c = FIDInceptionA(256, pool_features=64) |
|
inception.Mixed_5d = FIDInceptionA(288, pool_features=64) |
|
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) |
|
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) |
|
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) |
|
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) |
|
inception.Mixed_7b = FIDInceptionE_1(1280) |
|
inception.Mixed_7c = FIDInceptionE_2(2048) |
|
|
|
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) |
|
inception.load_state_dict(state_dict) |
|
return inception |
|
|
|
|
|
class FIDInceptionA(torchvision.models.inception.InceptionA): |
|
"""InceptionA block patched for FID computation""" |
|
def __init__(self, in_channels, pool_features): |
|
super(FIDInceptionA, self).__init__(in_channels, pool_features) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch5x5 = self.branch5x5_1(x) |
|
branch5x5 = self.branch5x5_2(branch5x5) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionC(torchvision.models.inception.InceptionC): |
|
"""InceptionC block patched for FID computation""" |
|
def __init__(self, in_channels, channels_7x7): |
|
super(FIDInceptionC, self).__init__(in_channels, channels_7x7) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch7x7 = self.branch7x7_1(x) |
|
branch7x7 = self.branch7x7_2(branch7x7) |
|
branch7x7 = self.branch7x7_3(branch7x7) |
|
|
|
branch7x7dbl = self.branch7x7dbl_1(x) |
|
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionE_1(torchvision.models.inception.InceptionE): |
|
"""First InceptionE block patched for FID computation""" |
|
def __init__(self, in_channels): |
|
super(FIDInceptionE_1, self).__init__(in_channels) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = torch.cat(branch3x3, 1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = torch.cat(branch3x3dbl, 1) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, |
|
count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionE_2(torchvision.models.inception.InceptionE): |
|
"""Second InceptionE block patched for FID computation""" |
|
def __init__(self, in_channels): |
|
super(FIDInceptionE_2, self).__init__(in_channels) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = torch.cat(branch3x3, 1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = torch.cat(branch3x3dbl, 1) |
|
|
|
|
|
|
|
|
|
|
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
class ImagePathDataset(torch.utils.data.Dataset): |
|
def __init__(self, files, transforms=None): |
|
self.files = files |
|
self.transforms = transforms |
|
|
|
def __len__(self): |
|
return len(self.files) |
|
|
|
def __getitem__(self, i): |
|
path = self.files[i] |
|
img = Image.open(path).convert('RGB') |
|
if self.transforms is not None: |
|
img = self.transforms(img) |
|
return img |
|
|
|
|
|
def get_activations(files, model, batch_size=50, dims=2048, device='cpu', |
|
num_workers=1, resize=0): |
|
"""Calculates the activations of the pool_3 layer for all images. |
|
|
|
Params: |
|
-- files : List of image files paths |
|
-- model : Instance of inception model |
|
-- batch_size : Batch size of images for the model to process at once. |
|
Make sure that the number of samples is a multiple of |
|
the batch size, otherwise some samples are ignored. This |
|
behavior is retained to match the original FID score |
|
implementation. |
|
-- dims : Dimensionality of features returned by Inception |
|
-- device : Device to run calculations |
|
-- num_workers : Number of parallel dataloader workers |
|
|
|
Returns: |
|
-- A numpy array of dimension (num images, dims) that contains the |
|
activations of the given tensor when feeding inception with the |
|
query tensor. |
|
""" |
|
model.eval() |
|
|
|
if batch_size > len(files): |
|
print(('Warning: batch size is bigger than the data size. ' |
|
'Setting batch size to data size')) |
|
batch_size = len(files) |
|
if resize > 0: |
|
tform = TF.Compose([TF.Resize((resize, resize)), TF.ToTensor()]) |
|
else: |
|
tform = TF.ToTensor() |
|
dataset = ImagePathDataset(files, transforms=tform) |
|
dataloader = torch.utils.data.DataLoader(dataset, |
|
batch_size=batch_size, |
|
shuffle=False, |
|
drop_last=False, |
|
num_workers=num_workers) |
|
|
|
pred_arr = np.empty((len(files), dims)) |
|
|
|
start_idx = 0 |
|
|
|
for batch in tqdm(dataloader): |
|
batch = batch.to(device) |
|
|
|
with torch.no_grad(): |
|
pred = model(batch)[0] |
|
|
|
|
|
|
|
if pred.size(2) != 1 or pred.size(3) != 1: |
|
pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) |
|
|
|
pred = pred.squeeze(3).squeeze(2).cpu().numpy() |
|
|
|
pred_arr[start_idx:start_idx + pred.shape[0]] = pred |
|
|
|
start_idx = start_idx + pred.shape[0] |
|
|
|
return pred_arr |
|
|
|
|
|
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): |
|
"""Numpy implementation of the Frechet Distance. |
|
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) |
|
and X_2 ~ N(mu_2, C_2) is |
|
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). |
|
|
|
Stable version by Dougal J. Sutherland. |
|
|
|
Params: |
|
-- mu1 : Numpy array containing the activations of a layer of the |
|
inception net (like returned by the function 'get_predictions') |
|
for generated samples. |
|
-- mu2 : The sample mean over activations, precalculated on an |
|
representative data set. |
|
-- sigma1: The covariance matrix over activations for generated samples. |
|
-- sigma2: The covariance matrix over activations, precalculated on an |
|
representative data set. |
|
|
|
Returns: |
|
-- : The Frechet Distance. |
|
""" |
|
|
|
mu1 = np.atleast_1d(mu1) |
|
mu2 = np.atleast_1d(mu2) |
|
|
|
sigma1 = np.atleast_2d(sigma1) |
|
sigma2 = np.atleast_2d(sigma2) |
|
|
|
assert mu1.shape == mu2.shape, \ |
|
'Training and test mean vectors have different lengths' |
|
assert sigma1.shape == sigma2.shape, \ |
|
'Training and test covariances have different dimensions' |
|
|
|
diff = mu1 - mu2 |
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) |
|
if not np.isfinite(covmean).all(): |
|
msg = ('fid calculation produces singular product; ' |
|
'adding %s to diagonal of cov estimates') % eps |
|
print(msg) |
|
offset = np.eye(sigma1.shape[0]) * eps |
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(covmean): |
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(covmean.imag)) |
|
raise ValueError('Imaginary component {}'.format(m)) |
|
covmean = covmean.real |
|
|
|
tr_covmean = np.trace(covmean) |
|
|
|
return (diff.dot(diff) + np.trace(sigma1) |
|
+ np.trace(sigma2) - 2 * tr_covmean) |
|
|
|
|
|
def calculate_activation_statistics(files, model, batch_size=50, dims=2048, |
|
device='cpu', num_workers=1, resize=0): |
|
"""Calculation of the statistics used by the FID. |
|
Params: |
|
-- files : List of image files paths |
|
-- model : Instance of inception model |
|
-- batch_size : The images numpy array is split into batches with |
|
batch size batch_size. A reasonable batch size |
|
depends on the hardware. |
|
-- dims : Dimensionality of features returned by Inception |
|
-- device : Device to run calculations |
|
-- num_workers : Number of parallel dataloader workers |
|
|
|
Returns: |
|
-- mu : The mean over samples of the activations of the pool_3 layer of |
|
the inception model. |
|
-- sigma : The covariance matrix of the activations of the pool_3 layer of |
|
the inception model. |
|
""" |
|
act = get_activations(files, model, batch_size, dims, device, num_workers, resize) |
|
mu = np.mean(act, axis=0) |
|
sigma = np.cov(act, rowvar=False) |
|
return mu, sigma |
|
|
|
|
|
def compute_statistics_of_path(path, model, batch_size, dims, device, |
|
num_workers=1, nimages=None, resize=0): |
|
if path.endswith('.npz'): |
|
with np.load(path) as f: |
|
m, s = f['mu'][:], f['sigma'][:] |
|
else: |
|
path = pathlib.Path(path) |
|
|
|
files = sorted([file for ext in IMAGE_EXTENSIONS |
|
for file in path.glob('**/*.{}'.format(ext))]) |
|
nfiles = len(files) |
|
n = nfiles if nimages is None else min(nimages, nfiles) |
|
print(f'Found {nfiles} images. Computing FID with {n} images.') |
|
files = files[:n] |
|
m, s = calculate_activation_statistics(files, model, batch_size, |
|
dims, device, num_workers, resize) |
|
|
|
return m, s |
|
|
|
|
|
def calculate_fid_given_paths(paths, batch_size, device, dims, num_workers=1, nimages=None, resize=0): |
|
"""Calculates the FID of two paths""" |
|
for p in paths: |
|
if not os.path.exists(p): |
|
raise RuntimeError('Invalid path: %s' % p) |
|
|
|
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] |
|
|
|
model = InceptionV3([block_idx]).to(device) |
|
|
|
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, |
|
dims, device, num_workers, nimages, resize) |
|
m2, s2 = compute_statistics_of_path(paths[1], model, batch_size, |
|
dims, device, num_workers, nimages, resize) |
|
fid_value = calculate_frechet_distance(m1, s1, m2, s2) |
|
|
|
return fid_value |
|
|
|
|
|
def save_fid_stats(paths, batch_size, device, dims, num_workers=1, nimages=None, resize=0): |
|
"""Calculates the FID of two paths""" |
|
if not os.path.exists(paths[0]): |
|
raise RuntimeError('Invalid path: %s' % paths[0]) |
|
|
|
if os.path.exists(paths[1]): |
|
raise RuntimeError('Existing output file: %s' % paths[1]) |
|
|
|
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] |
|
|
|
model = InceptionV3([block_idx]).to(device) |
|
|
|
print(f"Saving statistics for {paths[0]}") |
|
|
|
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, |
|
dims, device, num_workers, nimages, resize=0) |
|
|
|
np.savez_compressed(paths[1], mu=m1, sigma=s1) |
|
|
|
|
|
def main(): |
|
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) |
|
parser.add_argument('--batch-size', type=int, default=20, |
|
help='Batch size to use') |
|
parser.add_argument('--num-workers', type=int, |
|
help=('Number of processes to use for data loading. ' |
|
'Defaults to `min(8, num_cpus)`')) |
|
parser.add_argument('--device', type=str, default='cuda:0', |
|
help='Device to use. Like cuda, cuda:0 or cpu') |
|
parser.add_argument('--dims', type=int, default=2048, |
|
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), |
|
help=('Dimensionality of Inception features to use. ' |
|
'By default, uses pool3 features')) |
|
parser.add_argument('--nimages', type=int, default=50000, help='max number of images to use') |
|
parser.add_argument('--resize', type=int, default=0, help='resize images to this size, 0 mean keep original size') |
|
parser.add_argument('--save-stats', action='store_true', |
|
help=('Generate an npz archive from a directory of samples. ' |
|
'The first path is used as input and the second as output.')) |
|
parser.add_argument('path', type=str, nargs=2, |
|
help=('Paths to the generated images or ' |
|
'to .npz statistic files')) |
|
args = parser.parse_args() |
|
|
|
if args.device is None: |
|
device = torch.device('cuda' if (torch.cuda.is_available()) else 'cpu') |
|
else: |
|
device = torch.device(args.device) |
|
|
|
if args.num_workers is None: |
|
try: |
|
num_cpus = len(os.sched_getaffinity(0)) |
|
except AttributeError: |
|
|
|
|
|
|
|
num_cpus = os.cpu_count() |
|
|
|
num_workers = min(num_cpus, 8) if num_cpus is not None else 0 |
|
else: |
|
num_workers = args.num_workers |
|
|
|
if args.save_stats: |
|
save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers, args.nimages, args.resize) |
|
return |
|
|
|
fid_value = calculate_fid_given_paths(args.path, |
|
args.batch_size, |
|
device, |
|
args.dims, |
|
num_workers, |
|
args.nimages, |
|
args.resize) |
|
print('FID: ', fid_value) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |