Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, List, Callable | |
import cv2 | |
import threading | |
from gfpgan.utils import GFPGANer | |
import roop.globals | |
import roop.processors.frame.core | |
from roop.core import update_status | |
from roop.face_analyser import get_many_faces | |
from roop.typing import Frame, Face | |
from roop.utilities import conditional_download, resolve_relative_path, is_image, is_video | |
FACE_ENHANCER = None | |
THREAD_SEMAPHORE = threading.Semaphore() | |
THREAD_LOCK = threading.Lock() | |
NAME = 'ROOP.FACE-ENHANCER' | |
def get_face_enhancer() -> Any: | |
global FACE_ENHANCER | |
with THREAD_LOCK: | |
if FACE_ENHANCER is None: | |
model_path = resolve_relative_path('../models/GFPGANv1.4.pth') | |
# todo: set models path -> https://github.com/TencentARC/GFPGAN/issues/399 | |
FACE_ENHANCER = GFPGANer(model_path=model_path, upscale=1, device=get_device()) | |
return FACE_ENHANCER | |
def get_device() -> str: | |
if 'CUDAExecutionProvider' in roop.globals.execution_providers: | |
return 'cuda' | |
if 'CoreMLExecutionProvider' in roop.globals.execution_providers: | |
return 'mps' | |
return 'cpu' | |
def clear_face_enhancer() -> None: | |
global FACE_ENHANCER | |
FACE_ENHANCER = None | |
def pre_check() -> bool: | |
download_directory_path = resolve_relative_path('../models') | |
conditional_download(download_directory_path, ['https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth']) | |
return True | |
def pre_start() -> bool: | |
if not is_image(roop.globals.target_path) and not is_video(roop.globals.target_path): | |
update_status('Select an image or video for target path.', NAME) | |
return False | |
return True | |
def post_process() -> None: | |
clear_face_enhancer() | |
def enhance_face(target_face: Face, temp_frame: Frame) -> Frame: | |
start_x, start_y, end_x, end_y = map(int, target_face['bbox']) | |
padding_x = int((end_x - start_x) * 0.5) | |
padding_y = int((end_y - start_y) * 0.5) | |
start_x = max(0, start_x - padding_x) | |
start_y = max(0, start_y - padding_y) | |
end_x = max(0, end_x + padding_x) | |
end_y = max(0, end_y + padding_y) | |
temp_face = temp_frame[start_y:end_y, start_x:end_x] | |
if temp_face.size: | |
with THREAD_SEMAPHORE: | |
_, _, temp_face = get_face_enhancer().enhance( | |
temp_face, | |
paste_back=True | |
) | |
temp_frame[start_y:end_y, start_x:end_x] = temp_face | |
return temp_frame | |
def process_frame(source_face: Face, reference_face: Face, temp_frame: Frame) -> Frame: | |
many_faces = get_many_faces(temp_frame) | |
if many_faces: | |
for target_face in many_faces: | |
temp_frame = enhance_face(target_face, temp_frame) | |
return temp_frame | |
def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None: | |
for temp_frame_path in temp_frame_paths: | |
temp_frame = cv2.imread(temp_frame_path) | |
result = process_frame(None, None, temp_frame) | |
cv2.imwrite(temp_frame_path, result) | |
if update: | |
update() | |
def process_image(source_path: str, target_path: str, output_path: str) -> None: | |
target_frame = cv2.imread(target_path) | |
result = process_frame(None, None, target_frame) | |
cv2.imwrite(output_path, result) | |
def process_video(source_path: str, temp_frame_paths: List[str]) -> None: | |
roop.processors.frame.core.process_video(None, temp_frame_paths, process_frames) | |