AiOS / pytorch3d /.circleci /regenerate.py
ttxskk
update
d7e58f0
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
This script is adapted from the torchvision one.
"""
import os.path
import jinja2
import yaml
# The CUDA versions which have pytorch conda packages available for linux for each
# version of pytorch.
# Pytorch 1.4 also supports cuda 10.0 but we no longer build for cuda 10.0 at all.
CONDA_CUDA_VERSIONS = {
"1.6.0": ["cu92", "cu101", "cu102"],
"1.7.0": ["cu101", "cu102", "cu110"],
"1.7.1": ["cu101", "cu102", "cu110"],
"1.8.0": ["cu101", "cu102", "cu111"],
"1.8.1": ["cu101", "cu102", "cu111"],
"1.9.0": ["cu102", "cu111"],
"1.9.1": ["cu102", "cu111"],
"1.10.0": ["cu102", "cu111", "cu113"],
}
def conda_docker_image_for_cuda(cuda_version):
if cuda_version == "cu113":
return "pytorch/conda-builder:cuda113"
return None
def pytorch_versions_for_python(python_version):
if python_version in ["3.6", "3.7", "3.8"]:
return list(CONDA_CUDA_VERSIONS)
pytorch_without_py39 = ["1.4", "1.5.0", "1.5.1", "1.6.0", "1.7.0"]
return [i for i in CONDA_CUDA_VERSIONS if i not in pytorch_without_py39]
def workflows(prefix="", filter_branch=None, upload=False, indentation=6):
w = []
for btype in ["conda"]:
for python_version in ["3.6", "3.7", "3.8", "3.9"]:
for pytorch_version in pytorch_versions_for_python(python_version):
for cu_version in CONDA_CUDA_VERSIONS[pytorch_version]:
w += workflow_pair(
btype=btype,
python_version=python_version,
pytorch_version=pytorch_version,
cu_version=cu_version,
prefix=prefix,
upload=upload,
filter_branch=filter_branch,
)
return indent(indentation, w)
def workflow_pair(
*,
btype,
python_version,
pytorch_version,
cu_version,
prefix="",
upload=False,
filter_branch,
):
w = []
py = python_version.replace(".", "")
pyt = pytorch_version.replace(".", "")
base_workflow_name = f"{prefix}linux_{btype}_py{py}_{cu_version}_pyt{pyt}"
w.append(
generate_base_workflow(
base_workflow_name=base_workflow_name,
python_version=python_version,
pytorch_version=pytorch_version,
cu_version=cu_version,
btype=btype,
filter_branch=filter_branch,
)
)
if upload:
w.append(
generate_upload_workflow(
base_workflow_name=base_workflow_name,
btype=btype,
cu_version=cu_version,
filter_branch=filter_branch,
)
)
return w
def generate_base_workflow(
*,
base_workflow_name,
python_version,
cu_version,
pytorch_version,
btype,
filter_branch=None,
):
d = {
"name": base_workflow_name,
"python_version": python_version,
"cu_version": cu_version,
"pytorch_version": pytorch_version,
"context": "DOCKERHUB_TOKEN",
}
conda_docker_image = conda_docker_image_for_cuda(cu_version)
if conda_docker_image is not None:
d["conda_docker_image"] = conda_docker_image
if filter_branch is not None:
d["filters"] = {"branches": {"only": filter_branch}}
return {f"binary_linux_{btype}": d}
def generate_upload_workflow(*, base_workflow_name, btype, cu_version, filter_branch):
d = {
"name": f"{base_workflow_name}_upload",
"context": "org-member",
"requires": [base_workflow_name],
}
if btype == "wheel":
d["subfolder"] = cu_version + "/"
if filter_branch is not None:
d["filters"] = {"branches": {"only": filter_branch}}
return {f"binary_{btype}_upload": d}
def indent(indentation, data_list):
if len(data_list) == 0:
return ""
return ("\n" + " " * indentation).join(
yaml.dump(data_list, default_flow_style=False).splitlines()
)
if __name__ == "__main__":
d = os.path.dirname(__file__)
env = jinja2.Environment(
loader=jinja2.FileSystemLoader(d),
lstrip_blocks=True,
autoescape=False,
keep_trailing_newline=True,
)
with open(os.path.join(d, "config.yml"), "w") as f:
f.write(env.get_template("config.in.yml").render(workflows=workflows))