Spaces:
Running
Running
from pathlib import Path | |
import json | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
from gradio_leaderboard import Leaderboard, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from ttsds.benchmarks.benchmark import BenchmarkCategory | |
from ttsds import BenchmarkSuite | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, TAGS | |
from src.texts import LLM_BENCHMARKS_TEXT, EVALUATION_QUEUE_TEXT, CITATION_TEXT | |
from src.css_html_js import custom_css | |
def filter_dfs(tags, lb): | |
global f_b_df, f_a_df | |
is_agg = False | |
if "Environment" in lb.columns: | |
is_agg = True | |
if is_agg: | |
lb = f_a_df.copy() | |
else: | |
lb = f_b_df.copy() | |
if tags and len(lb) > 0: | |
lb = lb[lb["Tags"].apply(lambda x: any(tag in x for tag in tags))] | |
return lb | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
def submit_eval(model_name, model_tags, web_url, hf_url, code_url, paper_url, inference_details, file_path): | |
model_id = model_name.lower().replace(" ", "_") | |
# check if model already exists | |
if Path(f"{EVAL_REQUESTS_PATH}/{model_id}.json").exists(): | |
return "Model already exists in the evaluation queue" | |
# check which urls are valid | |
if web_url and not web_url.startswith("http"): | |
return "Please enter a valid URL" | |
if hf_url and not hf_url.startswith("http"): | |
return "Please enter a valid URL" | |
if code_url and not code_url.startswith("http"): | |
return "Please enter a valid URL" | |
if paper_url and not paper_url.startswith("http"): | |
return "Please enter a valid URL" | |
# move file to correct location | |
if not file_path.endswith(".tar.gz"): | |
return "Please upload a .tar.gz file" | |
Path(file_path).rename(f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz") | |
# build display name - use web_url to link text if available, and emojis for the other urls | |
display_name = model_name | |
if web_url: | |
display_name = f"[{display_name}]({web_url}) " | |
if hf_url: | |
display_name += f"[π€]({hf_url})" | |
if code_url: | |
display_name += f"[π»]({code_url})" | |
if paper_url: | |
display_name += f"[π]({paper_url})" | |
request_obj = { | |
"model_name": model_name, | |
"display_name": display_name, | |
"model_tags": model_tags, | |
"web_url": web_url, | |
"hf_url": hf_url, | |
"code_url": code_url, | |
"paper_url": paper_url, | |
"inference_details": inference_details, | |
"status": "pending", | |
} | |
with open(f"{EVAL_REQUESTS_PATH}/{model_id}.json", "w") as f: | |
json.dump(request_obj, f) | |
API.upload_file( | |
path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.json", | |
path_in_repo=f"{model_id}.json", | |
repo_id=QUEUE_REPO, | |
repo_type="dataset", | |
commit_message=f"Add {model_name} to evaluation queue", | |
) | |
API.upload_file( | |
path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz", | |
path_in_repo=f"{model_id}.tar.gz", | |
repo_id=QUEUE_REPO, | |
repo_type="dataset", | |
commit_message=f"Add {model_name} to evaluation queue", | |
) | |
return "Model submitted successfully π" | |
### Space initialisation | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, | |
local_dir=EVAL_REQUESTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN, | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, | |
local_dir=EVAL_RESULTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN, | |
) | |
except Exception: | |
restart_space() | |
results_df = pd.read_csv(EVAL_RESULTS_PATH + "/results.csv") | |
agg_df = BenchmarkSuite.aggregate_df(results_df) | |
agg_df = agg_df.pivot(index="dataset", columns="benchmark_category", values="score") | |
agg_df.rename(columns={"OVERALL": "General"}, inplace=True) | |
agg_df.columns = [x.capitalize() for x in agg_df.columns] | |
agg_df["Mean"] = agg_df.mean(axis=1) | |
# make sure mean is the first column | |
agg_df = agg_df[["Mean"] + [col for col in agg_df.columns if col != "Mean"]] | |
for col in agg_df.columns: | |
agg_df[col] = agg_df[col].apply(lambda x: round(x, 2)) | |
agg_df["Tags"] = "" | |
agg_df.reset_index(inplace=True) | |
agg_df.rename(columns={"dataset": "Model"}, inplace=True) | |
agg_df.sort_values("Mean", ascending=False, inplace=True) | |
benchmark_df = results_df.pivot(index="dataset", columns="benchmark_name", values="score") | |
# get benchmark name order by category | |
benchmark_order = list(results_df.sort_values("benchmark_category")["benchmark_name"].unique()) | |
benchmark_df = benchmark_df[benchmark_order] | |
benchmark_df = benchmark_df.reset_index() | |
benchmark_df.rename(columns={"dataset": "Model"}, inplace=True) | |
# set index | |
benchmark_df.set_index("Model", inplace=True) | |
benchmark_df["Mean"] = benchmark_df.mean(axis=1) | |
# make sure mean is the first column | |
benchmark_df = benchmark_df[["Mean"] + [col for col in benchmark_df.columns if col != "Mean"]] | |
# round all | |
for col in benchmark_df.columns: | |
benchmark_df[col] = benchmark_df[col].apply(lambda x: round(x, 2)) | |
benchmark_df["Tags"] = "" | |
benchmark_df.reset_index(inplace=True) | |
benchmark_df.sort_values("Mean", ascending=False, inplace=True) | |
# get details for each model | |
model_detail_files = Path(EVAL_REQUESTS_PATH).glob("*.json") | |
model_details = {} | |
for model_detail_file in model_detail_files: | |
with open(model_detail_file) as f: | |
model_detail = json.load(f) | |
model_details[model_detail_file.stem] = model_detail | |
# replace .tar.gz | |
benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: x.replace(".tar.gz", "")) | |
agg_df["Model"] = agg_df["Model"].apply(lambda x: x.replace(".tar.gz", "")) | |
benchmark_df["Tags"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", "")) | |
agg_df["Tags"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", "")) | |
benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x)) | |
agg_df["Model"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x)) | |
f_b_df = benchmark_df.copy() | |
f_a_df = agg_df.copy() | |
def init_leaderboard(dataframe): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
df_types = [] | |
for col in dataframe.columns: | |
if col == "Model": | |
df_types.append("markdown") | |
elif col == "Tags": | |
df_types.append("markdown") | |
else: | |
df_types.append("number") | |
cols = list(dataframe.columns) | |
cols.remove("Tags") | |
return Leaderboard( | |
value=dataframe, | |
select_columns=SelectColumns( | |
default_selection=cols, | |
cant_deselect=["Model", "Mean"], | |
label="Select Columns to Display:", | |
), | |
search_columns=["Model", "Tags"], | |
filter_columns=[], | |
interactive=False, | |
datatype=df_types, | |
) | |
app = gr.Blocks(css=custom_css, title="TTS Benchmark Leaderboard") | |
with app: | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π TTSDB Scores", elem_id="llm-benchmark-tab-table", id=0): | |
tags = gr.Dropdown( | |
TAGS, | |
value=[], | |
multiselect=True, | |
label="Tags", | |
info="Select tags to filter the leaderboard. You can suggest new tags here: https://huggingface.co/spaces/ttsds/benchmark/discussions/1", | |
) | |
leaderboard = init_leaderboard(f_a_df) | |
tags.change(filter_dfs, [tags, leaderboard], [leaderboard]) | |
with gr.TabItem("π Individual Benchmarks", elem_id="llm-benchmark-tab-table", id=1): | |
tags = gr.Dropdown( | |
TAGS, | |
value=[], | |
multiselect=True, | |
label="Tags", | |
info="Select tags to filter the leaderboard", | |
) | |
leaderboard = init_leaderboard(f_b_df) | |
tags.change(filter_dfs, [tags, leaderboard], [leaderboard]) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit here!", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit a TTS dataset here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
model_tags_dropdown = gr.Dropdown( | |
label="Model tags", | |
choices=TAGS, | |
multiselect=True, | |
) | |
website_url_textbox = gr.Textbox(label="Website URL (optional)") | |
hf_url_textbox = gr.Textbox(label="Huggingface URL (optional)") | |
code_url_textbox = gr.Textbox(label="Code URL (optional)") | |
paper_url_textbox = gr.Textbox(label="Paper URL (optional)") | |
inference_details_textbox = gr.TextArea(label="Inference details (optional)") | |
file_input = gr.File(file_types=[".gz"], interactive=True, label=".tar.gz TTS dataset") | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
submit_eval, | |
[ | |
model_name_textbox, | |
model_tags_dropdown, | |
website_url_textbox, | |
hf_url_textbox, | |
code_url_textbox, | |
paper_url_textbox, | |
inference_details_textbox, | |
file_input, | |
], | |
submission_result, | |
) | |
with gr.Row(): | |
with gr.Accordion("Citation", open=False): | |
gr.Markdown(f"Copy the BibTeX citation to cite this source:\n\n```bibtext\n{CITATION_TEXT}\n```") | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
app.queue(default_concurrency_limit=40).launch() | |