BrightBlueCheese
commited on
Commit
•
c9fcefb
1
Parent(s):
6c018d5
app
Browse files- .ipynb_checkpoints/app-checkpoint.py +4 -3
- .ipynb_checkpoints/utils_sl-checkpoint.py +2 -6
- app.py +4 -3
- utils_sl.py +2 -6
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -57,7 +57,7 @@ max_length = max_seq_length
|
|
57 |
num_workers = 2
|
58 |
|
59 |
# I just reused our previous research code with some modifications.
|
60 |
-
dir_main = "
|
61 |
name_model_mtr = "ChemLlama_Medium_30m_vloss_val_loss=0.029_ep_epoch=04.ckpt"
|
62 |
|
63 |
dir_model_mtr = f"{dir_main}/SolLlama-mtr/{name_model_mtr}"
|
@@ -73,7 +73,8 @@ num_workers = 2
|
|
73 |
## FT
|
74 |
|
75 |
ver_ft = 0
|
76 |
-
dir_model_ft_to_save = f"{dir_main}/SolLlama-mtr"
|
|
|
77 |
# name_model_ft = 'Solvent.pt'
|
78 |
name_model_ft = f"{solute_or_solvent}.pt"
|
79 |
|
@@ -130,7 +131,7 @@ trainer = L.Trainer(
|
|
130 |
|
131 |
|
132 |
# Predict
|
133 |
-
local_model_ft = utils_sl.
|
134 |
class_model_ft=model_ft,
|
135 |
dir_model_ft=dir_model_ft_to_save,
|
136 |
name_model_ft=name_model_ft
|
|
|
57 |
num_workers = 2
|
58 |
|
59 |
# I just reused our previous research code with some modifications.
|
60 |
+
dir_main = "."
|
61 |
name_model_mtr = "ChemLlama_Medium_30m_vloss_val_loss=0.029_ep_epoch=04.ckpt"
|
62 |
|
63 |
dir_model_mtr = f"{dir_main}/SolLlama-mtr/{name_model_mtr}"
|
|
|
73 |
## FT
|
74 |
|
75 |
ver_ft = 0
|
76 |
+
# dir_model_ft_to_save = f"{dir_main}/SolLlama-mtr"
|
77 |
+
ir_model_ft_to_save = f"{dir_main}SolLlama-mtr"
|
78 |
# name_model_ft = 'Solvent.pt'
|
79 |
name_model_ft = f"{solute_or_solvent}.pt"
|
80 |
|
|
|
131 |
|
132 |
|
133 |
# Predict
|
134 |
+
local_model_ft = utils_sl.load_model_ft_with(
|
135 |
class_model_ft=model_ft,
|
136 |
dir_model_ft=dir_model_ft_to_save,
|
137 |
name_model_ft=name_model_ft
|
.ipynb_checkpoints/utils_sl-checkpoint.py
CHANGED
@@ -78,20 +78,16 @@ def model_evalulator_sol(
|
|
78 |
# from .model_finetune import CustomFinetuneModel
|
79 |
# import model_finetune_sol
|
80 |
import torch
|
81 |
-
def
|
82 |
dir_model_ft:str,
|
83 |
name_model_ft:str):
|
84 |
# dir_model_ft level 1
|
85 |
# ex /main/model_mtr/model_mtr_ep/dataset
|
86 |
-
|
87 |
-
|
88 |
-
# extension = '.ckpt'
|
89 |
-
extension = '.pt'
|
90 |
|
91 |
dir_target_model_ft = f"{dir_model_ft}/{name_model_ft}"
|
92 |
|
93 |
|
94 |
-
loaded_state_dict = torch.load(dir_target_model_ft)
|
95 |
class_model_ft.load_state_dict(loaded_state_dict['state_dict'])
|
96 |
|
97 |
return class_model_ft # now is model_ft
|
|
|
78 |
# from .model_finetune import CustomFinetuneModel
|
79 |
# import model_finetune_sol
|
80 |
import torch
|
81 |
+
def load_model_ft_with(class_model_ft,
|
82 |
dir_model_ft:str,
|
83 |
name_model_ft:str):
|
84 |
# dir_model_ft level 1
|
85 |
# ex /main/model_mtr/model_mtr_ep/dataset
|
|
|
|
|
|
|
|
|
86 |
|
87 |
dir_target_model_ft = f"{dir_model_ft}/{name_model_ft}"
|
88 |
|
89 |
|
90 |
+
loaded_state_dict = torch.load(dir_target_model_ft, map_location=torch.device('cpu'))
|
91 |
class_model_ft.load_state_dict(loaded_state_dict['state_dict'])
|
92 |
|
93 |
return class_model_ft # now is model_ft
|
app.py
CHANGED
@@ -57,7 +57,7 @@ max_length = max_seq_length
|
|
57 |
num_workers = 2
|
58 |
|
59 |
# I just reused our previous research code with some modifications.
|
60 |
-
dir_main = "
|
61 |
name_model_mtr = "ChemLlama_Medium_30m_vloss_val_loss=0.029_ep_epoch=04.ckpt"
|
62 |
|
63 |
dir_model_mtr = f"{dir_main}/SolLlama-mtr/{name_model_mtr}"
|
@@ -73,7 +73,8 @@ num_workers = 2
|
|
73 |
## FT
|
74 |
|
75 |
ver_ft = 0
|
76 |
-
dir_model_ft_to_save = f"{dir_main}/SolLlama-mtr"
|
|
|
77 |
# name_model_ft = 'Solvent.pt'
|
78 |
name_model_ft = f"{solute_or_solvent}.pt"
|
79 |
|
@@ -130,7 +131,7 @@ trainer = L.Trainer(
|
|
130 |
|
131 |
|
132 |
# Predict
|
133 |
-
local_model_ft = utils_sl.
|
134 |
class_model_ft=model_ft,
|
135 |
dir_model_ft=dir_model_ft_to_save,
|
136 |
name_model_ft=name_model_ft
|
|
|
57 |
num_workers = 2
|
58 |
|
59 |
# I just reused our previous research code with some modifications.
|
60 |
+
dir_main = "."
|
61 |
name_model_mtr = "ChemLlama_Medium_30m_vloss_val_loss=0.029_ep_epoch=04.ckpt"
|
62 |
|
63 |
dir_model_mtr = f"{dir_main}/SolLlama-mtr/{name_model_mtr}"
|
|
|
73 |
## FT
|
74 |
|
75 |
ver_ft = 0
|
76 |
+
# dir_model_ft_to_save = f"{dir_main}/SolLlama-mtr"
|
77 |
+
ir_model_ft_to_save = f"{dir_main}SolLlama-mtr"
|
78 |
# name_model_ft = 'Solvent.pt'
|
79 |
name_model_ft = f"{solute_or_solvent}.pt"
|
80 |
|
|
|
131 |
|
132 |
|
133 |
# Predict
|
134 |
+
local_model_ft = utils_sl.load_model_ft_with(
|
135 |
class_model_ft=model_ft,
|
136 |
dir_model_ft=dir_model_ft_to_save,
|
137 |
name_model_ft=name_model_ft
|
utils_sl.py
CHANGED
@@ -78,20 +78,16 @@ def model_evalulator_sol(
|
|
78 |
# from .model_finetune import CustomFinetuneModel
|
79 |
# import model_finetune_sol
|
80 |
import torch
|
81 |
-
def
|
82 |
dir_model_ft:str,
|
83 |
name_model_ft:str):
|
84 |
# dir_model_ft level 1
|
85 |
# ex /main/model_mtr/model_mtr_ep/dataset
|
86 |
-
|
87 |
-
|
88 |
-
# extension = '.ckpt'
|
89 |
-
extension = '.pt'
|
90 |
|
91 |
dir_target_model_ft = f"{dir_model_ft}/{name_model_ft}"
|
92 |
|
93 |
|
94 |
-
loaded_state_dict = torch.load(dir_target_model_ft)
|
95 |
class_model_ft.load_state_dict(loaded_state_dict['state_dict'])
|
96 |
|
97 |
return class_model_ft # now is model_ft
|
|
|
78 |
# from .model_finetune import CustomFinetuneModel
|
79 |
# import model_finetune_sol
|
80 |
import torch
|
81 |
+
def load_model_ft_with(class_model_ft,
|
82 |
dir_model_ft:str,
|
83 |
name_model_ft:str):
|
84 |
# dir_model_ft level 1
|
85 |
# ex /main/model_mtr/model_mtr_ep/dataset
|
|
|
|
|
|
|
|
|
86 |
|
87 |
dir_target_model_ft = f"{dir_model_ft}/{name_model_ft}"
|
88 |
|
89 |
|
90 |
+
loaded_state_dict = torch.load(dir_target_model_ft, map_location=torch.device('cpu'))
|
91 |
class_model_ft.load_state_dict(loaded_state_dict['state_dict'])
|
92 |
|
93 |
return class_model_ft # now is model_ft
|