Magnata / tabs /extra /f0_extractor /f0_extractor.py
ttettheu's picture
Upload 154 files
7ef50cb verified
raw
history blame
2.14 kB
import librosa
import gradio as gr
import os
from matplotlib import pyplot as plt
from rvc.lib.predictors.F0Extractor import F0Extractor
from assets.i18n.i18n import I18nAuto
i18n = I18nAuto()
def extract_f0_curve(audio_path: str, method: str) -> tuple:
print("Extracting F0 Curve...")
image_path = os.path.join("logs", "f0_plot.png")
txt_path = os.path.join("logs", "f0_curve.txt")
y, sr = librosa.load(audio_path, sr=None)
hop_length = 160
librosa.note_to_hz("C1")
librosa.note_to_hz("C8")
f0_extractor = F0Extractor(audio_path, sample_rate=sr, method=method)
f0 = f0_extractor.extract_f0()
plt.figure(figsize=(10, 4))
plt.plot(f0)
plt.title(method)
plt.xlabel("Time (frames)")
plt.ylabel("Frequency (Hz)")
plt.savefig(image_path)
plt.close()
with open(txt_path, "w") as txtfile:
for i, f0_value in enumerate(f0):
frequency = i * sr / hop_length
txtfile.write(f"{frequency},{f0_value}\n")
print("F0 Curve extracted successfully!")
return image_path, txt_path
def f0_extractor_tab():
with gr.Accordion(label=i18n("Extract F0 Curve")):
with gr.Row():
audio = gr.Audio(label=i18n("Upload Audio"), type="filepath")
f0_method = gr.Radio(
label=i18n("Pitch extraction algorithm"),
info=i18n(
"Pitch extraction algorithm to use for the audio conversion. The default algorithm is rmvpe, which is recommended for most cases."
),
choices=["crepe", "fcpe", "rmvpe"],
value="rmvpe",
)
button = gr.Button(i18n("Extract F0 Curve"), variant="primary")
with gr.Accordion(label=i18n("Output Information")):
txt_output = gr.File(label="F0 Curve", type="filepath")
image_output = gr.Image(type="filepath", interactive=False)
button.click(
fn=extract_f0_curve,
inputs=[
audio,
f0_method,
],
outputs=[image_output, txt_output],
api_name="f0_extract",
)