Trang Dang commited on
Commit
218ce85
·
1 Parent(s): d01a371

process test image

Browse files
Files changed (1) hide show
  1. run.py +44 -1
run.py CHANGED
@@ -4,6 +4,19 @@ import numpy as np
4
  import matplotlib.pyplot as plt
5
  import app
6
  import os
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  def pred(src):
9
  # os.environ['HUGGINGFACE_HUB_HOME'] = './.cache'
@@ -18,7 +31,37 @@ def pred(src):
18
  my_sam_model.load_state_dict(torch.load("sam_model.pth", map_location=torch.device('cpu')))
19
 
20
  new_image = np.array(Image.open(src))
21
- inputs = processor(new_image, return_tensors="pt")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  inputs = {k: v.to(device) for k, v in inputs.items()}
23
  x = 1
24
  # my_sam_model.eval()
 
4
  import matplotlib.pyplot as plt
5
  import app
6
  import os
7
+ from patchify import patchify
8
+ from PIL import Image
9
+
10
+
11
+ def patchify(large_image):
12
+ all_img_patches = []
13
+ patches_img = patchify(large_image, (patch_size, patch_size), step=step) #Step=256 for 256 patches means no overlap
14
+ for i in range(patches_img.shape[0]):
15
+ for j in range(patches_img.shape[1]):
16
+ single_patch_img = patches_img[i,j,:,:]
17
+ all_img_patches.append(single_patch_img)
18
+ images = np.array(all_img_patches)
19
+
20
 
21
  def pred(src):
22
  # os.environ['HUGGINGFACE_HUB_HOME'] = './.cache'
 
31
  my_sam_model.load_state_dict(torch.load("sam_model.pth", map_location=torch.device('cpu')))
32
 
33
  new_image = np.array(Image.open(src))
34
+ patches = patchify(new_image, (256, 256), step=256)
35
+
36
+ # Define the size of your array
37
+ array_size = 256
38
+
39
+ # Define the size of your grid
40
+ grid_size = 10
41
+
42
+ # Generate the grid points
43
+ x = np.linspace(0, array_size-1, grid_size)
44
+ y = np.linspace(0, array_size-1, grid_size)
45
+
46
+ # Generate a grid of coordinates
47
+ xv, yv = np.meshgrid(x, y)
48
+
49
+ # Convert the numpy arrays to lists
50
+ xv_list = xv.tolist()
51
+ yv_list = yv.tolist()
52
+
53
+ # Combine the x and y coordinates into a list of list of lists
54
+ input_points = [[[int(x), int(y)] for x, y in zip(x_row, y_row)] for x_row, y_row in zip(xv_list, yv_list)]
55
+ input_points = torch.tensor(input_points).view(1, 1, grid_size*grid_size, 2)
56
+
57
+ i, j = 1, 2
58
+
59
+ # Selectelected patch for segmentation
60
+ random_array = patches[i, j]
61
+
62
+ single_patch = Image.fromarray(random_array)
63
+ inputs = processor(single_patch, input_points=input_points, return_tensors="pt")
64
+
65
  inputs = {k: v.to(device) for k, v in inputs.items()}
66
  x = 1
67
  # my_sam_model.eval()