Spaces:
Runtime error
Runtime error
import streamlit as st | |
from streamlit_shap import st_shap | |
import shap | |
from datasets import load_dataset | |
from sklearn.model_selection import train_test_split | |
import lightgbm as lgb | |
import numpy as np | |
import pandas as pd | |
def load_data(): | |
dataset = load_dataset("ttd22/house-price", streaming = True) | |
df = pd.DataFrame.from_dict(dataset["train"]) | |
df = df.drop('Id', axis=1) | |
drop_columns = (df.isnull().sum().sort_values(ascending=False).loc[lambda x : x > .90*1460]).index.to_list() | |
df = df.drop(drop_columns, axis = 'columns', errors = 'ignore') | |
cols_with_missing_values = df.columns[df.isnull().sum() > 0] | |
# Iterate through each column with missing values | |
for col in cols_with_missing_values: | |
# Check if the column is numeric | |
if df[col].dtype in ['int64', 'float64']: | |
# Impute missing values with median | |
median = df[col].median() | |
df[col].fillna(median, inplace=True) | |
else: | |
# Impute missing values with mode | |
mode = df[col].mode()[0] | |
df[col].fillna(mode, inplace=True) | |
X, y = df.drop("SalePrice", axis=1), df["SalePrice"] | |
# Extract categoricals and their indices | |
cat_features = X.select_dtypes(exclude=np.number).columns.to_list() | |
cat_idx = [X.columns.get_loc(col) for col in cat_features] | |
# Convert cat_features to pd.Categorical dtype | |
for col in cat_features: | |
X[col] = pd.Categorical(X[col]) | |
return X,y,cat_idx | |
def load_model(X, y, cat_idx): | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
params = {'n_estimators': 569, 'num_leaves': 62, 'max_depth': 10, 'learning_rate': 0.010786783375710743, 'colsample_bytree': 0.5065493231651268, 'subsample': 0.7900705177300663, 'lambda_l1': 4.998785478697207, 'lambda_l2': 2.1857959934319657, 'min_child_weight': 11.187719709451862} | |
model = lgb.LGBMRegressor(**params) | |
model.fit(X_train, y_train, eval_set=[(X_test, y_test)], categorical_feature=cat_idx, verbose = False) | |
return model | |
# train LightGBM model | |
X,y,cat_idx = load_data() | |
model = load_model(X, y, cat_idx) | |