ccr-colorado / app.py
tstone87's picture
Update app.py
b051880 verified
raw
history blame
5.62 kB
import os
import tempfile
import cv2
import streamlit as st
import PIL
from ultralytics import YOLO
# Required libraries (ensure these are in your requirements.txt):
# streamlit
# opencv-python-headless
# ultralytics
# Pillow
# Replace with your model's URL or local path
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/blob/main/best.pt'
# Configure the page for Hugging Face Spaces
st.set_page_config(
page_title="Fire Watch using AI vision models",
page_icon="🔥",
layout="wide",
initial_sidebar_state="expanded"
)
# Sidebar for file upload and settings
with st.sidebar:
st.header("IMAGE/VIDEO UPLOAD")
source_file = st.file_uploader(
"Choose an image or video...", type=("jpg", "jpeg", "png", "bmp", "webp", "mp4"))
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
video_option = st.selectbox(
"Select Video Shortening Option",
["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"]
)
# Main page header and introduction images
st.title("WildfireWatch: Detecting Wildfire using AI")
col1, col2 = st.columns(2)
with col1:
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_1.jpeg", use_column_width=True)
with col2:
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
st.markdown("""
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote areas. Early detection is critical to mitigating risks. WildfireWatch leverages the YOLOv8 model for real-time fire and smoke detection in images and videos.
""")
st.markdown("---")
st.header("Fire Detection:")
col1, col2 = st.columns(2)
if source_file:
if source_file.type.split('/')[0] == 'image':
uploaded_image = PIL.Image.open(source_file)
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
else:
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(source_file.read())
vidcap = cv2.VideoCapture(tfile.name)
else:
st.info("Please upload an image or video file to begin.")
# Load the YOLO model
try:
model = YOLO(model_path)
except Exception as ex:
st.error(f"Unable to load model. Check the specified path: {model_path}")
st.error(ex)
if st.sidebar.button("Let's Detect Wildfire"):
if not source_file:
st.warning("No file uploaded!")
elif source_file.type.split('/')[0] == 'image':
# Process image input
res = model.predict(uploaded_image, conf=confidence)
boxes = res[0].boxes
res_plotted = res[0].plot()[:, :, ::-1]
with col2:
st.image(res_plotted, caption='Detected Image', use_column_width=True)
with st.expander("Detection Results"):
for box in boxes:
st.write(box.xywh)
else:
# Process video input and shorten video based on sampling option
processed_frames = []
frame_count = 0
# Video properties
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Determine sampling interval and output fps
if video_option == "Original FPS":
sample_interval = 1 # process every frame
output_fps = orig_fps
elif video_option == "1 fps":
sample_interval = int(orig_fps) if orig_fps > 0 else 1
output_fps = 1
elif video_option == "1 frame per 5 seconds":
sample_interval = int(orig_fps * 5) if orig_fps > 0 else 5
output_fps = 1
elif video_option == "1 frame per 10 seconds":
sample_interval = int(orig_fps * 10) if orig_fps > 0 else 10
output_fps = 1
elif video_option == "1 frame per 15 seconds":
sample_interval = int(orig_fps * 15) if orig_fps > 0 else 15
output_fps = 1
else:
sample_interval = 1
output_fps = orig_fps
success, image = vidcap.read()
while success:
if frame_count % sample_interval == 0:
res = model.predict(image, conf=confidence)
res_plotted = res[0].plot()[:, :, ::-1]
processed_frames.append(res_plotted)
with col2:
st.image(res_plotted, caption=f'Detected Frame {frame_count}', use_column_width=True)
with st.expander("Detection Results"):
for box in res[0].boxes:
st.write(box.xywh)
frame_count += 1
success, image = vidcap.read()
if processed_frames:
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
for frame in processed_frames:
out.write(frame)
out.release()
st.success("Shortened video created successfully!")
with open(temp_video_file.name, 'rb') as video_file:
st.download_button(
label="Download Shortened Video",
data=video_file.read(),
file_name="shortened_video.mp4",
mime="video/mp4"
)
else:
st.error("No frames were processed from the video.")