Update space
Browse files- app.py +3 -3
- src/display/utils.py +3 -2
- src/leaderboard/read_evals.py +13 -12
- src/populate.py +12 -4
app.py
CHANGED
@@ -96,8 +96,8 @@ def init_leaderboard(dataframe):
|
|
96 |
interactive=False,
|
97 |
)
|
98 |
|
99 |
-
|
100 |
-
model_leaderboard_df = get_model_leaderboard_df()
|
101 |
|
102 |
def overall_leaderboard(dataframe):
|
103 |
if dataframe is None or dataframe.empty:
|
@@ -129,7 +129,7 @@ with demo:
|
|
129 |
|
130 |
|
131 |
with gr.TabItem("🎯 Overall", elem_id="llm-benchmark-tab-table", id=1):
|
132 |
-
leaderboard =
|
133 |
|
134 |
with gr.TabItem("🔢 Math", elem_id="math-tab-table", id=2):
|
135 |
|
|
|
96 |
interactive=False,
|
97 |
)
|
98 |
|
99 |
+
model_result_path = "./src/results/models_2024-10-07-14:50:12.666068.jsonl"
|
100 |
+
model_leaderboard_df = get_model_leaderboard_df(model_result_path)
|
101 |
|
102 |
def overall_leaderboard(dataframe):
|
103 |
if dataframe is None or dataframe.empty:
|
|
|
129 |
|
130 |
|
131 |
with gr.TabItem("🎯 Overall", elem_id="llm-benchmark-tab-table", id=1):
|
132 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
133 |
|
134 |
with gr.TabItem("🔢 Math", elem_id="math-tab-table", id=2):
|
135 |
|
src/display/utils.py
CHANGED
@@ -80,9 +80,9 @@ auto_eval_column_dict.append(["revision", ColumnContent, field(default_factory=l
|
|
80 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
81 |
AutoEvalColumn = AutoEvalColumn()
|
82 |
# print all attributes of AutoEvalColumn
|
83 |
-
print(AutoEvalColumn.__annotations__.keys())
|
84 |
# preint precision attribute
|
85 |
-
print(AutoEvalColumn.precision)
|
86 |
|
87 |
|
88 |
## For the queue columns in the submission tab
|
@@ -144,6 +144,7 @@ class Precision(Enum):
|
|
144 |
|
145 |
# Column selection
|
146 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
|
|
147 |
|
148 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
149 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
|
|
80 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
81 |
AutoEvalColumn = AutoEvalColumn()
|
82 |
# print all attributes of AutoEvalColumn
|
83 |
+
# print(AutoEvalColumn.__annotations__.keys())
|
84 |
# preint precision attribute
|
85 |
+
# print(AutoEvalColumn.precision)
|
86 |
|
87 |
|
88 |
## For the queue columns in the submission tab
|
|
|
144 |
|
145 |
# Column selection
|
146 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
147 |
+
# print(COLS)
|
148 |
|
149 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
150 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
src/leaderboard/read_evals.py
CHANGED
@@ -53,7 +53,8 @@ class ModelResult:
|
|
53 |
def to_dict(self):
|
54 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
55 |
|
56 |
-
average = 1 / self.results[Domains.dim0.dimension] if self.results[Domains.dim0.dimension] != 0 else 0
|
|
|
57 |
# average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
58 |
data_dict = {
|
59 |
"eval_name": self.eval_name, # not a column, just a save name,
|
@@ -62,16 +63,16 @@ class ModelResult:
|
|
62 |
AutoEvalColumn.organization.name: self.org,
|
63 |
AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,
|
64 |
|
65 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
66 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
67 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
68 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
69 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
70 |
-
AutoEvalColumn.revision.name: self.revision,
|
71 |
-
AutoEvalColumn.average.name: average,
|
72 |
-
AutoEvalColumn.likes.name: self.likes,
|
73 |
-
AutoEvalColumn.params.name: self.num_params,
|
74 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
75 |
}
|
76 |
|
77 |
for task in Tasks:
|
@@ -180,7 +181,7 @@ class EvalResult:
|
|
180 |
def to_dict(self):
|
181 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
182 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
183 |
-
print(AutoEvalColumn.precision.name, self.precision.value.name)
|
184 |
data_dict = {
|
185 |
"eval_name": self.eval_name, # not a column, just a save name,
|
186 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
|
|
53 |
def to_dict(self):
|
54 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
55 |
|
56 |
+
# average = 1 / self.results[Domains.dim0.dimension] if self.results[Domains.dim0.dimension] != 0 else 0
|
57 |
+
average = 1
|
58 |
# average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
59 |
data_dict = {
|
60 |
"eval_name": self.eval_name, # not a column, just a save name,
|
|
|
63 |
AutoEvalColumn.organization.name: self.org,
|
64 |
AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,
|
65 |
|
66 |
+
# AutoEvalColumn.precision.name: self.precision.value.name,
|
67 |
+
# AutoEvalColumn.model_type.name: self.model_type.value.name,
|
68 |
+
# AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
69 |
+
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
70 |
+
# AutoEvalColumn.architecture.name: self.architecture,
|
71 |
+
# AutoEvalColumn.revision.name: self.revision,
|
72 |
+
# AutoEvalColumn.average.name: average,
|
73 |
+
# AutoEvalColumn.likes.name: self.likes,
|
74 |
+
# AutoEvalColumn.params.name: self.num_params,
|
75 |
+
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
76 |
}
|
77 |
|
78 |
for task in Tasks:
|
|
|
181 |
def to_dict(self):
|
182 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
183 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
184 |
+
# print(AutoEvalColumn.precision.name, self.precision.value.name)
|
185 |
data_dict = {
|
186 |
"eval_name": self.eval_name, # not a column, just a save name,
|
187 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
src/populate.py
CHANGED
@@ -8,14 +8,18 @@ from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results, get_raw_model_results
|
9 |
|
10 |
|
11 |
-
def get_model_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
raw_data = get_raw_model_results(results_path)
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
df = pd.DataFrame.from_records(all_data_json)
|
17 |
-
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# filter out if any of the benchmarks have not been produced
|
21 |
# df = df[has_no_nan_values(df, benchmark_cols)]
|
@@ -31,7 +35,11 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
31 |
|
32 |
df = pd.DataFrame.from_records(all_data_json)
|
33 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# filter out if any of the benchmarks have not been produced
|
37 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
|
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results, get_raw_model_results
|
9 |
|
10 |
|
11 |
+
def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: list=[], benchmark_cols: list=[]) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
raw_data = get_raw_model_results(results_path)
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
df = pd.DataFrame.from_records(all_data_json)
|
17 |
+
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
+
for col in cols:
|
19 |
+
if col not in df.columns:
|
20 |
+
df[col] = None
|
21 |
+
else:
|
22 |
+
df = df[cols].round(decimals=2)
|
23 |
|
24 |
# filter out if any of the benchmarks have not been produced
|
25 |
# df = df[has_no_nan_values(df, benchmark_cols)]
|
|
|
35 |
|
36 |
df = pd.DataFrame.from_records(all_data_json)
|
37 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
38 |
+
for col in cols:
|
39 |
+
if col not in df.columns:
|
40 |
+
df[col] = None
|
41 |
+
else:
|
42 |
+
df[col] = df[col].round(decimals=2)
|
43 |
|
44 |
# filter out if any of the benchmarks have not been produced
|
45 |
df = df[has_no_nan_values(df, benchmark_cols)]
|