|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import tempfile |
|
import unittest |
|
import unittest.mock as mock |
|
from typing import Dict, List, Tuple |
|
|
|
import numpy as np |
|
import requests_mock |
|
import torch |
|
from requests.exceptions import HTTPError |
|
|
|
from diffusers.models import UNet2DConditionModel |
|
from diffusers.training_utils import EMAModel |
|
from diffusers.utils import torch_device |
|
from diffusers.utils.testing_utils import require_torch_gpu |
|
|
|
|
|
class ModelUtilsTest(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
|
|
import diffusers |
|
|
|
diffusers.utils.import_utils._safetensors_available = True |
|
|
|
def test_accelerate_loading_error_message(self): |
|
with self.assertRaises(ValueError) as error_context: |
|
UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet") |
|
|
|
|
|
assert "conv_out.bias" in str(error_context.exception) |
|
|
|
def test_cached_files_are_used_when_no_internet(self): |
|
|
|
response_mock = mock.Mock() |
|
response_mock.status_code = 500 |
|
response_mock.headers = {} |
|
response_mock.raise_for_status.side_effect = HTTPError |
|
response_mock.json.return_value = {} |
|
|
|
|
|
orig_model = UNet2DConditionModel.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet" |
|
) |
|
|
|
|
|
with mock.patch("requests.request", return_value=response_mock): |
|
|
|
model = UNet2DConditionModel.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True |
|
) |
|
|
|
for p1, p2 in zip(orig_model.parameters(), model.parameters()): |
|
if p1.data.ne(p2.data).sum() > 0: |
|
assert False, "Parameters not the same!" |
|
|
|
def test_one_request_upon_cached(self): |
|
|
|
if torch_device == "mps": |
|
return |
|
|
|
import diffusers |
|
|
|
diffusers.utils.import_utils._safetensors_available = False |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
with requests_mock.mock(real_http=True) as m: |
|
UNet2DConditionModel.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", cache_dir=tmpdirname |
|
) |
|
|
|
download_requests = [r.method for r in m.request_history] |
|
assert download_requests.count("HEAD") == 2, "2 HEAD requests one for config, one for model" |
|
assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model" |
|
|
|
with requests_mock.mock(real_http=True) as m: |
|
UNet2DConditionModel.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", cache_dir=tmpdirname |
|
) |
|
|
|
cache_requests = [r.method for r in m.request_history] |
|
assert ( |
|
"HEAD" == cache_requests[0] and len(cache_requests) == 1 |
|
), "We should call only `model_info` to check for _commit hash and `send_telemetry`" |
|
|
|
diffusers.utils.import_utils._safetensors_available = True |
|
|
|
def test_weight_overwrite(self): |
|
with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context: |
|
UNet2DConditionModel.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-torch", |
|
subfolder="unet", |
|
cache_dir=tmpdirname, |
|
in_channels=9, |
|
) |
|
|
|
|
|
assert "Cannot load" in str(error_context.exception) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model = UNet2DConditionModel.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-torch", |
|
subfolder="unet", |
|
cache_dir=tmpdirname, |
|
in_channels=9, |
|
low_cpu_mem_usage=False, |
|
ignore_mismatched_sizes=True, |
|
) |
|
|
|
assert model.config.in_channels == 9 |
|
|
|
|
|
class ModelTesterMixin: |
|
def test_from_save_pretrained(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
model = self.model_class(**init_dict) |
|
if hasattr(model, "set_default_attn_processor"): |
|
model.set_default_attn_processor() |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
new_model = self.model_class.from_pretrained(tmpdirname) |
|
if hasattr(new_model, "set_default_attn_processor"): |
|
new_model.set_default_attn_processor() |
|
new_model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
image = model(**inputs_dict) |
|
if isinstance(image, dict): |
|
image = image.sample |
|
|
|
new_image = new_model(**inputs_dict) |
|
|
|
if isinstance(new_image, dict): |
|
new_image = new_image.sample |
|
|
|
max_diff = (image - new_image).abs().sum().item() |
|
self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes") |
|
|
|
def test_from_save_pretrained_variant(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
model = self.model_class(**init_dict) |
|
if hasattr(model, "set_default_attn_processor"): |
|
model.set_default_attn_processor() |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname, variant="fp16") |
|
new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16") |
|
if hasattr(new_model, "set_default_attn_processor"): |
|
new_model.set_default_attn_processor() |
|
|
|
|
|
with self.assertRaises(OSError) as error_context: |
|
self.model_class.from_pretrained(tmpdirname) |
|
|
|
|
|
assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception) |
|
|
|
new_model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
image = model(**inputs_dict) |
|
if isinstance(image, dict): |
|
image = image.sample |
|
|
|
new_image = new_model(**inputs_dict) |
|
|
|
if isinstance(new_image, dict): |
|
new_image = new_image.sample |
|
|
|
max_diff = (image - new_image).abs().sum().item() |
|
self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes") |
|
|
|
@require_torch_gpu |
|
def test_from_save_pretrained_dynamo(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model = torch.compile(model) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
new_model = self.model_class.from_pretrained(tmpdirname) |
|
new_model.to(torch_device) |
|
|
|
assert new_model.__class__ == self.model_class |
|
|
|
def test_from_save_pretrained_dtype(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
for dtype in [torch.float32, torch.float16, torch.bfloat16]: |
|
if torch_device == "mps" and dtype == torch.bfloat16: |
|
continue |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.to(dtype) |
|
model.save_pretrained(tmpdirname) |
|
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype) |
|
assert new_model.dtype == dtype |
|
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype) |
|
assert new_model.dtype == dtype |
|
|
|
def test_determinism(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
first = model(**inputs_dict) |
|
if isinstance(first, dict): |
|
first = first.sample |
|
|
|
second = model(**inputs_dict) |
|
if isinstance(second, dict): |
|
second = second.sample |
|
|
|
out_1 = first.cpu().numpy() |
|
out_2 = second.cpu().numpy() |
|
out_1 = out_1[~np.isnan(out_1)] |
|
out_2 = out_2[~np.isnan(out_2)] |
|
max_diff = np.amax(np.abs(out_1 - out_2)) |
|
self.assertLessEqual(max_diff, 1e-5) |
|
|
|
def test_output(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_forward_with_norm_groups(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["norm_num_groups"] = 16 |
|
init_dict["block_out_channels"] = (16, 32) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_forward_signature(self): |
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common() |
|
|
|
model = self.model_class(**init_dict) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
expected_arg_names = ["sample", "timestep"] |
|
self.assertListEqual(arg_names[:2], expected_arg_names) |
|
|
|
def test_model_from_pretrained(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
new_model = self.model_class.from_pretrained(tmpdirname) |
|
new_model.to(torch_device) |
|
new_model.eval() |
|
|
|
|
|
for param_name in model.state_dict().keys(): |
|
param_1 = model.state_dict()[param_name] |
|
param_2 = new_model.state_dict()[param_name] |
|
self.assertEqual(param_1.shape, param_2.shape) |
|
|
|
with torch.no_grad(): |
|
output_1 = model(**inputs_dict) |
|
|
|
if isinstance(output_1, dict): |
|
output_1 = output_1.sample |
|
|
|
output_2 = new_model(**inputs_dict) |
|
|
|
if isinstance(output_2, dict): |
|
output_2 = output_2.sample |
|
|
|
self.assertEqual(output_1.shape, output_2.shape) |
|
|
|
@unittest.skipIf(torch_device == "mps", "Training is not supported in mps") |
|
def test_training(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.train() |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device) |
|
loss = torch.nn.functional.mse_loss(output, noise) |
|
loss.backward() |
|
|
|
@unittest.skipIf(torch_device == "mps", "Training is not supported in mps") |
|
def test_ema_training(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.train() |
|
ema_model = EMAModel(model.parameters()) |
|
|
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device) |
|
loss = torch.nn.functional.mse_loss(output, noise) |
|
loss.backward() |
|
ema_model.step(model.parameters()) |
|
|
|
def test_outputs_equivalence(self): |
|
def set_nan_tensor_to_zero(t): |
|
|
|
|
|
device = t.device |
|
if device.type == "mps": |
|
t = t.to("cpu") |
|
t[t != t] = 0 |
|
return t.to(device) |
|
|
|
def recursive_check(tuple_object, dict_object): |
|
if isinstance(tuple_object, (List, Tuple)): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif isinstance(tuple_object, Dict): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif tuple_object is None: |
|
return |
|
else: |
|
self.assertTrue( |
|
torch.allclose( |
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 |
|
), |
|
msg=( |
|
"Tuple and dict output are not equal. Difference:" |
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" |
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" |
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." |
|
), |
|
) |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
outputs_dict = model(**inputs_dict) |
|
outputs_tuple = model(**inputs_dict, return_dict=False) |
|
|
|
recursive_check(outputs_tuple, outputs_dict) |
|
|
|
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS") |
|
def test_enable_disable_gradient_checkpointing(self): |
|
if not self.model_class._supports_gradient_checkpointing: |
|
return |
|
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common() |
|
|
|
|
|
model = self.model_class(**init_dict) |
|
self.assertFalse(model.is_gradient_checkpointing) |
|
|
|
|
|
model.enable_gradient_checkpointing() |
|
self.assertTrue(model.is_gradient_checkpointing) |
|
|
|
|
|
model.disable_gradient_checkpointing() |
|
self.assertFalse(model.is_gradient_checkpointing) |
|
|
|
def test_deprecated_kwargs(self): |
|
has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters |
|
has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0 |
|
|
|
if has_kwarg_in_model_class and not has_deprecated_kwarg: |
|
raise ValueError( |
|
f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs" |
|
" under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are" |
|
" no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" |
|
" [<deprecated_argument>]`" |
|
) |
|
|
|
if not has_kwarg_in_model_class and has_deprecated_kwarg: |
|
raise ValueError( |
|
f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs" |
|
" under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to" |
|
f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument" |
|
" from `_deprecated_kwargs = [<deprecated_argument>]`" |
|
) |
|
|