|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import VQModel |
|
from diffusers.utils import floats_tensor, torch_device |
|
|
|
from ..test_modeling_common import ModelTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class VQModelTests(ModelTesterMixin, unittest.TestCase): |
|
model_class = VQModel |
|
|
|
@property |
|
def dummy_input(self, sizes=(32, 32)): |
|
batch_size = 4 |
|
num_channels = 3 |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
|
|
return {"sample": image} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": [32, 64], |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
"latent_channels": 3, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_forward_signature(self): |
|
pass |
|
|
|
def test_training(self): |
|
pass |
|
|
|
def test_from_pretrained_hub(self): |
|
model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertEqual(len(loading_info["missing_keys"]), 0) |
|
|
|
model.to(torch_device) |
|
image = model(**self.dummy_input) |
|
|
|
assert image is not None, "Make sure output is not None" |
|
|
|
def test_output_pretrained(self): |
|
model = VQModel.from_pretrained("fusing/vqgan-dummy") |
|
model.to(torch_device).eval() |
|
|
|
torch.manual_seed(0) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed_all(0) |
|
|
|
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) |
|
image = image.to(torch_device) |
|
with torch.no_grad(): |
|
output = model(image).sample |
|
|
|
output_slice = output[0, -1, -3:, -3:].flatten().cpu() |
|
|
|
expected_output_slice = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143]) |
|
|
|
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) |
|
|