tsi-org's picture
Update app.py
edc922b verified
raw
history blame
9.24 kB
import gradio as gr
from urllib.parse import urlparse
import requests
import time
import os
from utils.gradio_helpers import parse_outputs, process_outputs
names = ['image', 'rotate_pitch', 'rotate_yaw', 'rotate_roll', 'blink', 'eyebrow', 'wink', 'pupil_x', 'pupil_y', 'aaa', 'eee', 'woo', 'smile', 'src_ratio', 'sample_ratio', 'crop_factor', 'output_format', 'output_quality']
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
headers = {'Content-Type': 'application/json'}
payload = {"input": {}}
base_url = "http://0.0.0.0:7860"
for i, key in enumerate(names):
value = args[i]
if value and (os.path.exists(str(value))):
value = f"{base_url}/file=" + value
if value is not None and value != "":
payload["input"][key] = value
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload)
if response.status_code == 201:
follow_up_url = response.json()["urls"]["get"]
response = requests.get(follow_up_url, headers=headers)
while response.json()["status"] != "succeeded":
if response.json()["status"] == "failed":
raise gr.Error("The submission failed!")
response = requests.get(follow_up_url, headers=headers)
time.sleep(1)
if response.status_code == 200:
json_response = response.json()
if(outputs[0].get_config()["name"] == "json"):
return json_response["output"]
predict_outputs = parse_outputs(json_response["output"])
processed_outputs = process_outputs(predict_outputs)
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
else:
if(response.status_code == 409):
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
raise gr.Error(f"The submission failed! Error: {response.status_code}")
def check_password(password):
return password == "pixo"
css = '''
#top{position: fixed; right: 20px; top: 20px; max-width: 300px; z-index: 1000;}
body {
font-family: 'Roboto', sans-serif;
background: linear-gradient(135deg, #f5d0fe, #d8b4fe);
color: #4a0e4e;
transition: background-color 0.3s, color 0.3s;
}
.container {
background-color: rgba(255, 255, 255, 0.2);
backdrop-filter: blur(10px);
border-radius: 15px;
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
padding: 20px;
margin-bottom: 20px;
}
.gradio-slider input[type="range"] {
accent-color: #d946ef;
}
.gradio-button {
background-color: #a21caf;
color: white;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
transition: background-color 0.3s, transform 0.1s;
font-weight: bold;
}
.gradio-button:hover {
background-color: #86198f;
transform: translateY(-2px);
}
.gradio-slider, .gradio-dropdown, .gradio-checkbox, .gradio-radio, .gradio-textbox, .gradio-number {
background-color: rgba(255, 255, 255, 0.1);
border: 1px solid rgba(255, 255, 255, 0.2);
border-radius: 5px;
padding: 10px;
margin-bottom: 10px;
}
h1, h2, h3 {
color: #701a75;
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}
@media (prefers-color-scheme: dark) {
body {
background: linear-gradient(135deg, #3b0764, #581c87);
color: #e9d5ff;
}
.container {
background-color: rgba(0, 0, 0, 0.2);
}
h1, h2, h3 {
color: #d8b4fe;
}
.gradio-button {
background-color: #d946ef;
color: #1a1a1a;
}
.gradio-button:hover {
background-color: #e879f9;
}
}
'''
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🎭 Expression Editor")
with gr.Column():
password = gr.Textbox(type="password", label="Enter password", placeholder="Enter 'pixo' to access")
login_button = gr.Button("Login", variant="primary")
with gr.Column(visible=False) as main_interface:
gr.Markdown("## 🎨 Demo for expression-editor cog image by fofr")
with gr.Row():
with gr.Column(scale=2, elem_classes="container"):
image = gr.Image(
label="Input image",
type="filepath",
height=180
)
with gr.Row():
rotate_pitch = gr.Slider(
label="Rotate Up-Down",
value=0,
minimum=-20, maximum=20
)
rotate_yaw = gr.Slider(
label="Rotate Left-Right turn",
value=0,
minimum=-20, maximum=20
)
rotate_roll = gr.Slider(
label="Rotate Left-Right tilt", value=0,
minimum=-20, maximum=20
)
with gr.Row():
blink = gr.Slider(
label="Blink", value=0,
minimum=-20, maximum=5
)
eyebrow = gr.Slider(
label="Eyebrow", value=0,
minimum=-10, maximum=15
)
wink = gr.Slider(
label="Wink", value=0,
minimum=0, maximum=25
)
with gr.Row():
pupil_x = gr.Slider(
label="Pupil X", value=0,
minimum=-15, maximum=15
)
pupil_y = gr.Slider(
label="Pupil Y", value=0,
minimum=-15, maximum=15
)
with gr.Row():
aaa = gr.Slider(
label="Aaa", value=0,
minimum=-30, maximum=120
)
eee = gr.Slider(
label="Eee", value=0,
minimum=-20, maximum=15
)
woo = gr.Slider(
label="Woo", value=0,
minimum=-20, maximum=15
)
smile = gr.Slider(
label="Smile", value=0,
minimum=-0.3, maximum=1.3
)
with gr.Accordion("More Settings", open=False):
src_ratio = gr.Number(
label="Src Ratio", info='''Source ratio''', value=1
)
sample_ratio = gr.Slider(
label="Sample Ratio", info='''Sample ratio''', value=1,
minimum=-0.2, maximum=1.2
)
crop_factor = gr.Slider(
label="Crop Factor", info='''Crop factor''', value=1.7,
minimum=1.5, maximum=2.5
)
output_format = gr.Dropdown(
choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp"
)
output_quality = gr.Number(
label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=95
)
submit_btn = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
result_image = gr.Image(elem_id="top", label="Generated Image")
gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<p style="display: flex;gap: 6px;">
<a href="https://huggingface.co/spaces/fffiloni/expression-editor?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
</a> to skip the queue and enjoy faster inference on the GPU of your choice
</p>
</div>
""")
inputs = [image, rotate_pitch, rotate_yaw, rotate_roll, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile, src_ratio, sample_ratio, crop_factor, output_format, output_quality]
outputs = [result_image]
def login(password):
if check_password(password):
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True, value="")
login_button.click(
fn=login,
inputs=[password],
outputs=[main_interface, password]
)
submit_btn.click(
fn=predict,
inputs=inputs,
outputs=outputs,
)
for slider in [rotate_pitch, rotate_yaw, rotate_roll, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile]:
slider.release(fn=predict, inputs=inputs, outputs=outputs, show_progress="minimal")
demo.launch(share=False, show_error=True)