Spaces:
Runtime error
Runtime error
import time | |
import gradio as gr | |
import openai | |
import os | |
import requests | |
import json | |
# 從 Hugging Face secrets 中讀取 OpenAI API 金鑰 | |
api_key = os.getenv('OPENAI_API_KEY') | |
if not api_key: | |
raise ValueError("請設置 'OPENAI_API_KEY' 環境變數") | |
# OpenAI API key | |
openai_api_key = api_key | |
# 將 Gradio 的歷史紀錄轉換為 OpenAI 格式 | |
def transform_history(history): | |
new_history = [] | |
for chat in history: | |
new_history.append({"role": "user", "content": chat[0]}) | |
new_history.append({"role": "assistant", "content": chat[1]}) | |
return new_history | |
# 回應生成函數,使用 requests 來呼叫 OpenAI API | |
def response(message, history): | |
global conversation_history | |
# 將 Gradio 的歷史紀錄轉換為 OpenAI 的格式 | |
conversation_history = transform_history(history) | |
url = "https://api.openai.com/v1/chat/completions" | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openai_api_key}" | |
} | |
# 設置初始的 prompt_instruction | |
prompt_instruction = """ | |
你是企業的專業HR助教,名字叫做 '小清' ,要以專業、熱情、有耐心且親切的的口氣,與企業員工互動並解答人力資源相關問題: | |
""" | |
prompt_to_gpt = prompt_instruction + message | |
# 新增至 conversation_history | |
conversation_history.append({"role": "system", "content": prompt_to_gpt}) | |
# 設置請求的數據 | |
data = { | |
"model": "gpt-4o", # 確認使用的模型是 gpt-4 或 gpt-3.5-turbo | |
"messages": conversation_history, | |
"max_tokens": 200 # 控制生成的最大令牌數 | |
} | |
# 發送請求到 OpenAI API | |
response = requests.post(url, headers=headers, data=json.dumps(data)) | |
# 處理回應 | |
response_json = response.json() | |
# 提取模型的回應並加入歷史紀錄 | |
if 'choices' in response_json and len(response_json['choices']) > 0: | |
model_response = response_json['choices'][0]['message']['content'] | |
conversation_history.append({"role": "assistant", "content": model_response}) | |
# 逐字回傳生成的文字,實現打字機效果 | |
for i in range(len(model_response)): | |
time.sleep(0.05) # 每個字符間隔 0.05 秒 | |
yield model_response[: i+1] | |
else: | |
yield "Error: No response from the model." | |
# 建立 Gradio 聊天界面 | |
gr.ChatInterface(response, | |
title='OpenAI Chat', | |
textbox=gr.Textbox(placeholder="Question to OpenAI")).launch(share=True) | |