OpenAI-Chat / app.py
tsengiii's picture
Update app.py
567d787 verified
import time
import gradio as gr
import openai
import os
import requests
import json
# 從 Hugging Face secrets 中讀取 OpenAI API 金鑰
api_key = os.getenv('OPENAI_API_KEY')
if not api_key:
raise ValueError("請設置 'OPENAI_API_KEY' 環境變數")
# OpenAI API key
openai_api_key = api_key
# 將 Gradio 的歷史紀錄轉換為 OpenAI 格式
def transform_history(history):
new_history = []
for chat in history:
new_history.append({"role": "user", "content": chat[0]})
new_history.append({"role": "assistant", "content": chat[1]})
return new_history
# 回應生成函數,使用 requests 來呼叫 OpenAI API
def response(message, history):
global conversation_history
# 將 Gradio 的歷史紀錄轉換為 OpenAI 的格式
conversation_history = transform_history(history)
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
# 設置初始的 prompt_instruction
prompt_instruction = """
你是企業的專業HR助教,名字叫做 '小清' ,要以專業、熱情、有耐心且親切的的口氣,與企業員工互動並解答人力資源相關問題:
"""
prompt_to_gpt = prompt_instruction + message
# 新增至 conversation_history
conversation_history.append({"role": "system", "content": prompt_to_gpt})
# 設置請求的數據
data = {
"model": "gpt-4o", # 確認使用的模型是 gpt-4 或 gpt-3.5-turbo
"messages": conversation_history,
"max_tokens": 200 # 控制生成的最大令牌數
}
# 發送請求到 OpenAI API
response = requests.post(url, headers=headers, data=json.dumps(data))
# 處理回應
response_json = response.json()
# 提取模型的回應並加入歷史紀錄
if 'choices' in response_json and len(response_json['choices']) > 0:
model_response = response_json['choices'][0]['message']['content']
conversation_history.append({"role": "assistant", "content": model_response})
# 逐字回傳生成的文字,實現打字機效果
for i in range(len(model_response)):
time.sleep(0.05) # 每個字符間隔 0.05 秒
yield model_response[: i+1]
else:
yield "Error: No response from the model."
# 建立 Gradio 聊天界面
gr.ChatInterface(response,
title='OpenAI Chat',
textbox=gr.Textbox(placeholder="Question to OpenAI")).launch(share=True)