ANPR / model3.py
tsaddev's picture
Upload 18 files
0a2675c verified
from model1 import reader, np, YOLO, car_detection, lp_detection
import torch
from PIL import Image
import cv2
from torchvision import transforms
char_dect = YOLO("models/yolov8n_lpchar_det.pt")
char_rec = torch.load("models/charrec.pt", map_location="cpu")
# function to detect cars in the given image
def detect_cars(inputs):
cars = []
# running the cars detection model with 50% confidence threshold
car_results = car_detection.predict(source=inputs, classes=[2], conf=0.5, verbose=False)
# iterating through each output (num of outputs will be same as num of inputs)
for car_result in car_results:
# finding the bounding boxes of the cars detected
boxes = car_result.boxes.xyxy.tolist()
# iterating through each car detected
for box in boxes:
# cropping car image from the input image
car = car_result.orig_img[int(box[1]):int(box[3]), int(box[0]):int(box[2])]
cars.append(car)
return cars
# function to detect licence plates in the given car images
def detect_lp(inputs):
lps = []
# running the license plate detection model with 50% confidence threshold
lp_results = lp_detection.predict(source=inputs, conf=0.5, verbose=False)
# iterating through each output (num of outputs will be same as num of inputs)
for lp_result in lp_results:
# finding the bounding boxes of the license plate detected
lp_boxes = lp_result.boxes.xyxy.tolist()
# iterating through each license plate detected
for lp_box in lp_boxes:
# cropping license plate image from the car image
lp = lp_result.orig_img[int(lp_box[1]):int(lp_box[3]), int(lp_box[0]):int(lp_box[2])]
lps.append(lp)
# breaking as we only want to detect one licence plate per car
break
# if no licence plate is detected then we are adding a black image
if len(lp_boxes) == 0:
lps.append(np.zeros((100,100,3), np.uint8))
return lps
# function to detect licence plates character in the given LP images
def chars_lp_det(inputs):
vis_lp = []
chars = []
# running the license plate detection model with 50% confidence threshold
chars_results = char_dect.predict(source=inputs, conf=0.5, verbose=False)
# iterating through each output (num of outputs will be same as num of inputs)
for chars_result in chars_results:
# finding the bounding boxes of the license plate detected
chars_boxes = chars_result.boxes.xyxy.tolist()
# iterating through each license plate detected
vis = chars_result.orig_img.copy()
c_list =[]
for chars_box in chars_boxes:
# cropping license plate image from the car image
cv2.rectangle(vis, (int(chars_box[0]),int(chars_box[1])), (int(chars_box[2]), int(chars_box[3])), (0,255,0), 1)
chrs = chars_result.orig_img[int(chars_box[1]):int(chars_box[3]), int(chars_box[0]):int(chars_box[2])]
c_list.append(chrs)
chars.append(c_list)
vis_lp.append(vis)
# if no licence plate is detected then we are adding a black image
if len(vis_lp) == 0:
vis_lp.append(np.zeros((100,100,3), np.uint8))
return vis_lp, chars
# function to detect licence plate number in the given licence plate images
def detect_lp_text(inputs):
plate_number = []
# iterating through each licence plate
for input in inputs:
# finding the number/text in licence plate
result = reader.readtext(input)
# if no text is found in the licence plate, then adding a default text not found
if len(result) == 0:
plate_number.append("not found")
else:
# adding the licence plate number to a list
plate_number.append(result[0][1])
return plate_number
def rec_lp_char(inputs):
m = ['0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
lptexts = []
for input in inputs:
imgs = [transform(Image.fromarray(input[i])) for i in range(len(input))]
if len(imgs) <= 1:
lptexts.append("not found")
continue
imgs = torch.stack(imgs)
output = char_rec(imgs)
preds = torch.argmax(output, dim=1).tolist()
lptext = ""
for pred in preds:
lptext += m[int(pred)]
lptexts.append(lptext)
return lptexts
def run(inputs):
# for future, to handle multiple inputs
# currently using just one input
inputs = inputs[0]
# detecting cars, this function returns all detected car images
cars = detect_cars(inputs)
# if no car is detected black images are returned
if len(cars) == 0:
return [np.zeros((100,100,3), np.uint8)], [np.zeros((100,100,3), np.uint8)], "not found"
# detecting licence plates from the car images
# returns licence plate images, if it cant find a license plate a black image is returned
lps = detect_lp(cars)
vis_lp, chars_lp = chars_lp_det(lps)
lptexts = rec_lp_char(chars_lp)
# detecting licence plate number from licence plate images
# returns text from the licence plate images, if none is detected "not found" text is returned
# lp_text = detect_lp_text(lps)
return cars, vis_lp, lptexts