|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
|
|
|
|
class Ranger(Optimizer): |
|
|
|
def __init__(self, params, lr=1e-3, |
|
alpha=0.5, k=6, N_sma_threshhold=5, |
|
betas=(.95, 0.999), eps=1e-5, weight_decay=0, |
|
use_gc=True, gc_conv_only=False |
|
|
|
): |
|
|
|
|
|
if not 0.0 <= alpha <= 1.0: |
|
raise ValueError(f'Invalid slow update rate: {alpha}') |
|
if not 1 <= k: |
|
raise ValueError(f'Invalid lookahead steps: {k}') |
|
if not lr > 0: |
|
raise ValueError(f'Invalid Learning Rate: {lr}') |
|
if not eps > 0: |
|
raise ValueError(f'Invalid eps: {eps}') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
defaults = dict(lr=lr, alpha=alpha, k=k, step_counter=0, betas=betas, N_sma_threshhold=N_sma_threshhold, |
|
eps=eps, weight_decay=weight_decay) |
|
super().__init__(params, defaults) |
|
|
|
|
|
self.N_sma_threshhold = N_sma_threshhold |
|
|
|
|
|
|
|
self.alpha = alpha |
|
self.k = k |
|
|
|
|
|
self.radam_buffer = [[None, None, None] for ind in range(10)] |
|
|
|
|
|
self.use_gc = use_gc |
|
|
|
|
|
self.gc_gradient_threshold = 3 if gc_conv_only else 1 |
|
|
|
def __setstate__(self, state): |
|
super(Ranger, self).__setstate__(state) |
|
|
|
def step(self, closure=None): |
|
loss = None |
|
|
|
|
|
for group in self.param_groups: |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data.float() |
|
|
|
if grad.is_sparse: |
|
raise RuntimeError('Ranger optimizer does not support sparse gradients') |
|
|
|
p_data_fp32 = p.data.float() |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
|
|
|
|
|
|
state['step'] = 0 |
|
state['exp_avg'] = torch.zeros_like(p_data_fp32) |
|
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) |
|
|
|
|
|
state['slow_buffer'] = torch.empty_like(p.data) |
|
state['slow_buffer'].copy_(p.data) |
|
|
|
else: |
|
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) |
|
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) |
|
|
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
beta1, beta2 = group['betas'] |
|
|
|
|
|
if grad.dim() > self.gc_gradient_threshold: |
|
grad.add_(-grad.mean(dim=tuple(range(1, grad.dim())), keepdim=True)) |
|
|
|
state['step'] += 1 |
|
|
|
|
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) |
|
|
|
exp_avg.mul_(beta1).add_(1 - beta1, grad) |
|
|
|
buffered = self.radam_buffer[int(state['step'] % 10)] |
|
|
|
if state['step'] == buffered[0]: |
|
N_sma, step_size = buffered[1], buffered[2] |
|
else: |
|
buffered[0] = state['step'] |
|
beta2_t = beta2 ** state['step'] |
|
N_sma_max = 2 / (1 - beta2) - 1 |
|
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) |
|
buffered[1] = N_sma |
|
if N_sma > self.N_sma_threshhold: |
|
step_size = math.sqrt( |
|
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / ( |
|
N_sma_max - 2)) / (1 - beta1 ** state['step']) |
|
else: |
|
step_size = 1.0 / (1 - beta1 ** state['step']) |
|
buffered[2] = step_size |
|
|
|
if group['weight_decay'] != 0: |
|
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) |
|
|
|
|
|
if N_sma > self.N_sma_threshhold: |
|
denom = exp_avg_sq.sqrt().add_(group['eps']) |
|
p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom) |
|
else: |
|
p_data_fp32.add_(-step_size * group['lr'], exp_avg) |
|
|
|
p.data.copy_(p_data_fp32) |
|
|
|
|
|
|
|
if state['step'] % group['k'] == 0: |
|
slow_p = state['slow_buffer'] |
|
slow_p.add_(self.alpha, p.data - slow_p) |
|
p.data.copy_(slow_p) |
|
|
|
return loss |