|
import os |
|
import torch |
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
import librosa |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"Using device: {device}") |
|
|
|
|
|
token = os.getenv("HF_TOKEN") |
|
processor = WhisperProcessor.from_pretrained("jiviai/audioX-south-v1") |
|
model = WhisperForConditionalGeneration.from_pretrained("jiviai/audioX-south-v1").to(device) |
|
model.config.forced_decoder_ids = None |
|
|
|
|
|
audio_path = "sample.wav" |
|
audio_np, sr = librosa.load(audio_path, sr=None) |
|
if sr != 16000: |
|
audio_np = librosa.resample(audio_np, orig_sr=sr, target_sr=16000) |
|
|
|
input_features = processor(audio_np, sampling_rate=16000, return_tensors="pt").to(device).input_features |
|
|
|
|
|
|
|
|
|
predicted_ids = model.generate(input_features, task="transcribe", language="ta") |
|
|
|
|
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] |
|
print(transcription) |
|
|