Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- LICENSE +21 -0
- config.py +96 -0
- infer.py +942 -0
- requirements.txt +25 -0
- rmvpe.py +432 -0
- vc_infer_pipeline.py +443 -0
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2023 arkandash
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
config.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import sys
|
| 3 |
+
import torch
|
| 4 |
+
from multiprocessing import cpu_count
|
| 5 |
+
|
| 6 |
+
class Config:
|
| 7 |
+
def __init__(self):
|
| 8 |
+
self.device = "cuda:0"
|
| 9 |
+
self.is_half = True
|
| 10 |
+
self.n_cpu = 0
|
| 11 |
+
self.gpu_name = None
|
| 12 |
+
self.gpu_mem = None
|
| 13 |
+
(
|
| 14 |
+
self.colab,
|
| 15 |
+
self.api,
|
| 16 |
+
) = self.arg_parse()
|
| 17 |
+
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
| 18 |
+
|
| 19 |
+
@staticmethod
|
| 20 |
+
def arg_parse() -> tuple:
|
| 21 |
+
parser = argparse.ArgumentParser()
|
| 22 |
+
parser.add_argument("--colab", action="store_true", help="Launch in colab")
|
| 23 |
+
parser.add_argument("--api", action="store_true", help="Launch with api")
|
| 24 |
+
cmd_opts = parser.parse_args()
|
| 25 |
+
|
| 26 |
+
return (
|
| 27 |
+
cmd_opts.colab,
|
| 28 |
+
cmd_opts.api
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
| 32 |
+
# check `getattr` and try it for compatibility
|
| 33 |
+
@staticmethod
|
| 34 |
+
def has_mps() -> bool:
|
| 35 |
+
if not torch.backends.mps.is_available():
|
| 36 |
+
return False
|
| 37 |
+
try:
|
| 38 |
+
torch.zeros(1).to(torch.device("mps"))
|
| 39 |
+
return True
|
| 40 |
+
except Exception:
|
| 41 |
+
return False
|
| 42 |
+
|
| 43 |
+
def device_config(self) -> tuple:
|
| 44 |
+
if torch.cuda.is_available():
|
| 45 |
+
i_device = int(self.device.split(":")[-1])
|
| 46 |
+
self.gpu_name = torch.cuda.get_device_name(i_device)
|
| 47 |
+
if (
|
| 48 |
+
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
| 49 |
+
or "P40" in self.gpu_name.upper()
|
| 50 |
+
or "1060" in self.gpu_name
|
| 51 |
+
or "1070" in self.gpu_name
|
| 52 |
+
or "1080" in self.gpu_name
|
| 53 |
+
):
|
| 54 |
+
print("INFO: Found GPU", self.gpu_name, ", force to fp32")
|
| 55 |
+
self.is_half = False
|
| 56 |
+
else:
|
| 57 |
+
print("INFO: Found GPU", self.gpu_name)
|
| 58 |
+
self.gpu_mem = int(
|
| 59 |
+
torch.cuda.get_device_properties(i_device).total_memory
|
| 60 |
+
/ 1024
|
| 61 |
+
/ 1024
|
| 62 |
+
/ 1024
|
| 63 |
+
+ 0.4
|
| 64 |
+
)
|
| 65 |
+
elif self.has_mps():
|
| 66 |
+
print("INFO: No supported Nvidia GPU found, use MPS instead")
|
| 67 |
+
self.device = "mps"
|
| 68 |
+
self.is_half = False
|
| 69 |
+
else:
|
| 70 |
+
print("INFO: No supported Nvidia GPU found, use CPU instead")
|
| 71 |
+
self.device = "cpu"
|
| 72 |
+
self.is_half = False
|
| 73 |
+
|
| 74 |
+
if self.n_cpu == 0:
|
| 75 |
+
self.n_cpu = cpu_count()
|
| 76 |
+
|
| 77 |
+
if self.is_half:
|
| 78 |
+
# 6G显存配置
|
| 79 |
+
x_pad = 3
|
| 80 |
+
x_query = 10
|
| 81 |
+
x_center = 60
|
| 82 |
+
x_max = 65
|
| 83 |
+
else:
|
| 84 |
+
# 5G显存配置
|
| 85 |
+
x_pad = 1
|
| 86 |
+
x_query = 6
|
| 87 |
+
x_center = 38
|
| 88 |
+
x_max = 41
|
| 89 |
+
|
| 90 |
+
if self.gpu_mem != None and self.gpu_mem <= 4:
|
| 91 |
+
x_pad = 1
|
| 92 |
+
x_query = 5
|
| 93 |
+
x_center = 30
|
| 94 |
+
x_max = 32
|
| 95 |
+
|
| 96 |
+
return x_pad, x_query, x_center, x_max
|
infer.py
ADDED
|
@@ -0,0 +1,942 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, os, traceback, sys, warnings, shutil, numpy as np
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import librosa
|
| 4 |
+
import asyncio
|
| 5 |
+
import rarfile
|
| 6 |
+
import edge_tts
|
| 7 |
+
import yt_dlp
|
| 8 |
+
import ffmpeg
|
| 9 |
+
import gdown
|
| 10 |
+
import subprocess
|
| 11 |
+
import wave
|
| 12 |
+
import soundfile as sf
|
| 13 |
+
from scipy.io import wavfile
|
| 14 |
+
from datetime import datetime
|
| 15 |
+
from urllib.parse import urlparse
|
| 16 |
+
from mega import Mega
|
| 17 |
+
|
| 18 |
+
now_dir = os.getcwd()
|
| 19 |
+
tmp = os.path.join(now_dir, "TEMP")
|
| 20 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
| 21 |
+
os.makedirs(tmp, exist_ok=True)
|
| 22 |
+
os.environ["TEMP"] = tmp
|
| 23 |
+
from lib.infer_pack.models import (
|
| 24 |
+
SynthesizerTrnMs256NSFsid,
|
| 25 |
+
SynthesizerTrnMs256NSFsid_nono,
|
| 26 |
+
SynthesizerTrnMs768NSFsid,
|
| 27 |
+
SynthesizerTrnMs768NSFsid_nono,
|
| 28 |
+
)
|
| 29 |
+
from fairseq import checkpoint_utils
|
| 30 |
+
from vc_infer_pipeline import VC
|
| 31 |
+
from config import Config
|
| 32 |
+
config = Config()
|
| 33 |
+
|
| 34 |
+
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
|
| 35 |
+
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
|
| 36 |
+
|
| 37 |
+
hubert_model = None
|
| 38 |
+
|
| 39 |
+
f0method_mode = ["pm", "harvest", "crepe"]
|
| 40 |
+
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
|
| 41 |
+
|
| 42 |
+
if os.path.isfile("rmvpe.pt"):
|
| 43 |
+
f0method_mode.insert(2, "rmvpe")
|
| 44 |
+
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
|
| 45 |
+
|
| 46 |
+
def load_hubert():
|
| 47 |
+
global hubert_model
|
| 48 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
| 49 |
+
["hubert_base.pt"],
|
| 50 |
+
suffix="",
|
| 51 |
+
)
|
| 52 |
+
hubert_model = models[0]
|
| 53 |
+
hubert_model = hubert_model.to(config.device)
|
| 54 |
+
if config.is_half:
|
| 55 |
+
hubert_model = hubert_model.half()
|
| 56 |
+
else:
|
| 57 |
+
hubert_model = hubert_model.float()
|
| 58 |
+
hubert_model.eval()
|
| 59 |
+
|
| 60 |
+
load_hubert()
|
| 61 |
+
|
| 62 |
+
weight_root = "weights"
|
| 63 |
+
index_root = "weights/index"
|
| 64 |
+
weights_model = []
|
| 65 |
+
weights_index = []
|
| 66 |
+
for _, _, model_files in os.walk(weight_root):
|
| 67 |
+
for file in model_files:
|
| 68 |
+
if file.endswith(".pth"):
|
| 69 |
+
weights_model.append(file)
|
| 70 |
+
for _, _, index_files in os.walk(index_root):
|
| 71 |
+
for file in index_files:
|
| 72 |
+
if file.endswith('.index') and "trained" not in file:
|
| 73 |
+
weights_index.append(os.path.join(index_root, file))
|
| 74 |
+
|
| 75 |
+
def check_models():
|
| 76 |
+
weights_model = []
|
| 77 |
+
weights_index = []
|
| 78 |
+
for _, _, model_files in os.walk(weight_root):
|
| 79 |
+
for file in model_files:
|
| 80 |
+
if file.endswith(".pth"):
|
| 81 |
+
weights_model.append(file)
|
| 82 |
+
for _, _, index_files in os.walk(index_root):
|
| 83 |
+
for file in index_files:
|
| 84 |
+
if file.endswith('.index') and "trained" not in file:
|
| 85 |
+
weights_index.append(os.path.join(index_root, file))
|
| 86 |
+
return (
|
| 87 |
+
gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
|
| 88 |
+
gr.Dropdown.update(choices=sorted(weights_index))
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
def clean():
|
| 92 |
+
return (
|
| 93 |
+
gr.Dropdown.update(value=""),
|
| 94 |
+
gr.Slider.update(visible=False)
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
def vc_single(
|
| 98 |
+
sid,
|
| 99 |
+
vc_audio_mode,
|
| 100 |
+
input_audio_path,
|
| 101 |
+
input_upload_audio,
|
| 102 |
+
vocal_audio,
|
| 103 |
+
tts_text,
|
| 104 |
+
tts_voice,
|
| 105 |
+
f0_up_key,
|
| 106 |
+
f0_file,
|
| 107 |
+
f0_method,
|
| 108 |
+
file_index,
|
| 109 |
+
index_rate,
|
| 110 |
+
filter_radius,
|
| 111 |
+
resample_sr,
|
| 112 |
+
rms_mix_rate,
|
| 113 |
+
protect
|
| 114 |
+
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
| 115 |
+
global tgt_sr, net_g, vc, hubert_model, version, cpt
|
| 116 |
+
try:
|
| 117 |
+
logs = []
|
| 118 |
+
print(f"Converting...")
|
| 119 |
+
logs.append(f"Converting...")
|
| 120 |
+
yield "\n".join(logs), None
|
| 121 |
+
if vc_audio_mode == "Input path" or "Youtube" and input_audio_path != "":
|
| 122 |
+
audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
|
| 123 |
+
elif vc_audio_mode == "Upload audio":
|
| 124 |
+
selected_audio = input_upload_audio
|
| 125 |
+
if vocal_audio:
|
| 126 |
+
selected_audio = vocal_audio
|
| 127 |
+
elif input_upload_audio:
|
| 128 |
+
selected_audio = input_upload_audio
|
| 129 |
+
sampling_rate, audio = selected_audio
|
| 130 |
+
duration = audio.shape[0] / sampling_rate
|
| 131 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
| 132 |
+
if len(audio.shape) > 1:
|
| 133 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
| 134 |
+
if sampling_rate != 16000:
|
| 135 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
| 136 |
+
elif vc_audio_mode == "TTS Audio":
|
| 137 |
+
if tts_text is None or tts_voice is None:
|
| 138 |
+
return "You need to enter text and select a voice", None
|
| 139 |
+
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
|
| 140 |
+
audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
|
| 141 |
+
input_audio_path = "tts.mp3"
|
| 142 |
+
f0_up_key = int(f0_up_key)
|
| 143 |
+
times = [0, 0, 0]
|
| 144 |
+
if hubert_model == None:
|
| 145 |
+
load_hubert()
|
| 146 |
+
if_f0 = cpt.get("f0", 1)
|
| 147 |
+
audio_opt = vc.pipeline(
|
| 148 |
+
hubert_model,
|
| 149 |
+
net_g,
|
| 150 |
+
sid,
|
| 151 |
+
audio,
|
| 152 |
+
input_audio_path,
|
| 153 |
+
times,
|
| 154 |
+
f0_up_key,
|
| 155 |
+
f0_method,
|
| 156 |
+
file_index,
|
| 157 |
+
# file_big_npy,
|
| 158 |
+
index_rate,
|
| 159 |
+
if_f0,
|
| 160 |
+
filter_radius,
|
| 161 |
+
tgt_sr,
|
| 162 |
+
resample_sr,
|
| 163 |
+
rms_mix_rate,
|
| 164 |
+
version,
|
| 165 |
+
protect,
|
| 166 |
+
f0_file=f0_file
|
| 167 |
+
)
|
| 168 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
| 169 |
+
tgt_sr = resample_sr
|
| 170 |
+
index_info = (
|
| 171 |
+
"Using index:%s." % file_index
|
| 172 |
+
if os.path.exists(file_index)
|
| 173 |
+
else "Index not used."
|
| 174 |
+
)
|
| 175 |
+
print("Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
| 176 |
+
index_info,
|
| 177 |
+
times[0],
|
| 178 |
+
times[1],
|
| 179 |
+
times[2],
|
| 180 |
+
))
|
| 181 |
+
info = f"{index_info}\n[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
|
| 182 |
+
logs.append(info)
|
| 183 |
+
yield "\n".join(logs), (tgt_sr, audio_opt)
|
| 184 |
+
except:
|
| 185 |
+
info = traceback.format_exc()
|
| 186 |
+
print(info)
|
| 187 |
+
logs.append(info)
|
| 188 |
+
yield "\n".join(logs), None
|
| 189 |
+
|
| 190 |
+
def get_vc(sid, to_return_protect0):
|
| 191 |
+
global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
|
| 192 |
+
if sid == "" or sid == []:
|
| 193 |
+
global hubert_model
|
| 194 |
+
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
| 195 |
+
print("clean_empty_cache")
|
| 196 |
+
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
| 197 |
+
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
| 198 |
+
if torch.cuda.is_available():
|
| 199 |
+
torch.cuda.empty_cache()
|
| 200 |
+
###楼下不这么折腾清理不干净
|
| 201 |
+
if_f0 = cpt.get("f0", 1)
|
| 202 |
+
version = cpt.get("version", "v1")
|
| 203 |
+
if version == "v1":
|
| 204 |
+
if if_f0 == 1:
|
| 205 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
| 206 |
+
*cpt["config"], is_half=config.is_half
|
| 207 |
+
)
|
| 208 |
+
else:
|
| 209 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
| 210 |
+
elif version == "v2":
|
| 211 |
+
if if_f0 == 1:
|
| 212 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
| 213 |
+
*cpt["config"], is_half=config.is_half
|
| 214 |
+
)
|
| 215 |
+
else:
|
| 216 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
| 217 |
+
del net_g, cpt
|
| 218 |
+
if torch.cuda.is_available():
|
| 219 |
+
torch.cuda.empty_cache()
|
| 220 |
+
cpt = None
|
| 221 |
+
return (
|
| 222 |
+
gr.Slider.update(maximum=2333, visible=False),
|
| 223 |
+
gr.Slider.update(visible=True),
|
| 224 |
+
gr.Dropdown.update(choices=sorted(weights_index), value=""),
|
| 225 |
+
gr.Markdown.update(value="# <center> No model selected")
|
| 226 |
+
)
|
| 227 |
+
print(f"Loading {sid} model...")
|
| 228 |
+
selected_model = sid[:-4]
|
| 229 |
+
cpt = torch.load(os.path.join(weight_root, sid), map_location="cpu")
|
| 230 |
+
tgt_sr = cpt["config"][-1]
|
| 231 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
| 232 |
+
if_f0 = cpt.get("f0", 1)
|
| 233 |
+
if if_f0 == 0:
|
| 234 |
+
to_return_protect0 = {
|
| 235 |
+
"visible": False,
|
| 236 |
+
"value": 0.5,
|
| 237 |
+
"__type__": "update",
|
| 238 |
+
}
|
| 239 |
+
else:
|
| 240 |
+
to_return_protect0 = {
|
| 241 |
+
"visible": True,
|
| 242 |
+
"value": to_return_protect0,
|
| 243 |
+
"__type__": "update",
|
| 244 |
+
}
|
| 245 |
+
version = cpt.get("version", "v1")
|
| 246 |
+
if version == "v1":
|
| 247 |
+
if if_f0 == 1:
|
| 248 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
| 249 |
+
else:
|
| 250 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
| 251 |
+
elif version == "v2":
|
| 252 |
+
if if_f0 == 1:
|
| 253 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
| 254 |
+
else:
|
| 255 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
| 256 |
+
del net_g.enc_q
|
| 257 |
+
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
| 258 |
+
net_g.eval().to(config.device)
|
| 259 |
+
if config.is_half:
|
| 260 |
+
net_g = net_g.half()
|
| 261 |
+
else:
|
| 262 |
+
net_g = net_g.float()
|
| 263 |
+
vc = VC(tgt_sr, config)
|
| 264 |
+
n_spk = cpt["config"][-3]
|
| 265 |
+
weights_index = []
|
| 266 |
+
for _, _, index_files in os.walk(index_root):
|
| 267 |
+
for file in index_files:
|
| 268 |
+
if file.endswith('.index') and "trained" not in file:
|
| 269 |
+
weights_index.append(os.path.join(index_root, file))
|
| 270 |
+
if weights_index == []:
|
| 271 |
+
selected_index = gr.Dropdown.update(value="")
|
| 272 |
+
else
|
| 273 |
+
selected_index = gr.Dropdown.update(value=weights_index[0])
|
| 274 |
+
for index, model_index in enumerate(weights_index):
|
| 275 |
+
if selected_model in model_index:
|
| 276 |
+
selected_index = gr.Dropdown.update(value=weights_index[index])
|
| 277 |
+
break
|
| 278 |
+
return (
|
| 279 |
+
gr.Slider.update(maximum=n_spk, visible=True),
|
| 280 |
+
to_return_protect0,
|
| 281 |
+
selected_index,
|
| 282 |
+
gr.Markdown.update(
|
| 283 |
+
f'## <center> {selected_model}\n'+
|
| 284 |
+
f'### <center> RVC {version} Model'
|
| 285 |
+
)
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
def find_audio_files(folder_path, extensions):
|
| 289 |
+
audio_files = []
|
| 290 |
+
for root, dirs, files in os.walk(folder_path):
|
| 291 |
+
for file in files:
|
| 292 |
+
if any(file.endswith(ext) for ext in extensions):
|
| 293 |
+
audio_files.append(file)
|
| 294 |
+
return audio_files
|
| 295 |
+
|
| 296 |
+
def vc_multi(
|
| 297 |
+
spk_item,
|
| 298 |
+
vc_input,
|
| 299 |
+
vc_output,
|
| 300 |
+
vc_transform0,
|
| 301 |
+
f0method0,
|
| 302 |
+
file_index,
|
| 303 |
+
index_rate,
|
| 304 |
+
filter_radius,
|
| 305 |
+
resample_sr,
|
| 306 |
+
rms_mix_rate,
|
| 307 |
+
protect,
|
| 308 |
+
):
|
| 309 |
+
global tgt_sr, net_g, vc, hubert_model, version, cpt
|
| 310 |
+
logs = []
|
| 311 |
+
logs.append("Converting...")
|
| 312 |
+
yield "\n".join(logs)
|
| 313 |
+
print()
|
| 314 |
+
try:
|
| 315 |
+
if os.path.exists(vc_input):
|
| 316 |
+
folder_path = vc_input
|
| 317 |
+
extensions = [".mp3", ".wav", ".flac", ".ogg"]
|
| 318 |
+
audio_files = find_audio_files(folder_path, extensions)
|
| 319 |
+
for index, file in enumerate(audio_files, start=1):
|
| 320 |
+
audio, sr = librosa.load(os.path.join(folder_path, file), sr=16000, mono=True)
|
| 321 |
+
input_audio_path = folder_path, file
|
| 322 |
+
f0_up_key = int(vc_transform0)
|
| 323 |
+
times = [0, 0, 0]
|
| 324 |
+
if hubert_model == None:
|
| 325 |
+
load_hubert()
|
| 326 |
+
if_f0 = cpt.get("f0", 1)
|
| 327 |
+
audio_opt = vc.pipeline(
|
| 328 |
+
hubert_model,
|
| 329 |
+
net_g,
|
| 330 |
+
spk_item,
|
| 331 |
+
audio,
|
| 332 |
+
input_audio_path,
|
| 333 |
+
times,
|
| 334 |
+
f0_up_key,
|
| 335 |
+
f0method0,
|
| 336 |
+
file_index,
|
| 337 |
+
index_rate,
|
| 338 |
+
if_f0,
|
| 339 |
+
filter_radius,
|
| 340 |
+
tgt_sr,
|
| 341 |
+
resample_sr,
|
| 342 |
+
rms_mix_rate,
|
| 343 |
+
version,
|
| 344 |
+
protect,
|
| 345 |
+
f0_file=None
|
| 346 |
+
)
|
| 347 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
| 348 |
+
tgt_sr = resample_sr
|
| 349 |
+
output_path = f"{os.path.join(vc_output, file)}"
|
| 350 |
+
os.makedirs(os.path.join(vc_output), exist_ok=True)
|
| 351 |
+
sf.write(
|
| 352 |
+
output_path,
|
| 353 |
+
audio_opt,
|
| 354 |
+
tgt_sr,
|
| 355 |
+
)
|
| 356 |
+
info = f"{index} / {len(audio_files)} | {file}"
|
| 357 |
+
print(info)
|
| 358 |
+
logs.append(info)
|
| 359 |
+
yield "\n".join(logs)
|
| 360 |
+
else:
|
| 361 |
+
logs.append("Folder not found or path doesn't exist.")
|
| 362 |
+
yield "\n".join(logs)
|
| 363 |
+
except:
|
| 364 |
+
info = traceback.format_exc()
|
| 365 |
+
print(info)
|
| 366 |
+
logs.append(info)
|
| 367 |
+
yield "\n".join(logs)
|
| 368 |
+
|
| 369 |
+
def download_audio(url, audio_provider):
|
| 370 |
+
logs = []
|
| 371 |
+
os.makedirs("dl_audio", exist_ok=True)
|
| 372 |
+
if url == "":
|
| 373 |
+
logs.append("URL required!")
|
| 374 |
+
yield None, "\n".join(logs)
|
| 375 |
+
return None, "\n".join(logs)
|
| 376 |
+
if audio_provider == "Youtube":
|
| 377 |
+
logs.append("Downloading the audio...")
|
| 378 |
+
yield None, "\n".join(logs)
|
| 379 |
+
ydl_opts = {
|
| 380 |
+
'noplaylist': True,
|
| 381 |
+
'format': 'bestaudio/best',
|
| 382 |
+
'postprocessors': [{
|
| 383 |
+
'key': 'FFmpegExtractAudio',
|
| 384 |
+
'preferredcodec': 'wav',
|
| 385 |
+
}],
|
| 386 |
+
"outtmpl": 'result/dl_audio/audio',
|
| 387 |
+
}
|
| 388 |
+
audio_path = "result/dl_audio/audio.wav"
|
| 389 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 390 |
+
ydl.download([url])
|
| 391 |
+
logs.append("Download Complete.")
|
| 392 |
+
yield audio_path, "\n".join(logs)
|
| 393 |
+
|
| 394 |
+
def cut_vocal_and_inst_yt(split_model):
|
| 395 |
+
logs = []
|
| 396 |
+
logs.append("Starting the audio splitting process...")
|
| 397 |
+
yield "\n".join(logs), None, None, None
|
| 398 |
+
command = f"demucs --two-stems=vocals -n {split_model} result/dl_audio/audio.wav -o output"
|
| 399 |
+
result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
|
| 400 |
+
for line in result.stdout:
|
| 401 |
+
logs.append(line)
|
| 402 |
+
yield "\n".join(logs), None, None, None
|
| 403 |
+
print(result.stdout)
|
| 404 |
+
vocal = f"output/{split_model}/audio/vocals.wav"
|
| 405 |
+
inst = f"output/{split_model}/audio/no_vocals.wav"
|
| 406 |
+
logs.append("Audio splitting complete.")
|
| 407 |
+
yield "\n".join(logs), vocal, inst, vocal
|
| 408 |
+
|
| 409 |
+
def cut_vocal_and_inst(split_model, audio_data):
|
| 410 |
+
logs = []
|
| 411 |
+
vocal_path = "output/result/audio.wav"
|
| 412 |
+
os.makedirs("output/result", exist_ok=True)
|
| 413 |
+
wavfile.write(vocal_path, audio_data[0], audio_data[1])
|
| 414 |
+
logs.append("Starting the audio splitting process...")
|
| 415 |
+
yield "\n".join(logs), None, None
|
| 416 |
+
command = f"demucs --two-stems=vocals -n {split_model} {vocal_path} -o output"
|
| 417 |
+
result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
|
| 418 |
+
for line in result.stdout:
|
| 419 |
+
logs.append(line)
|
| 420 |
+
yield "\n".join(logs), None, None
|
| 421 |
+
print(result.stdout)
|
| 422 |
+
vocal = f"output/{split_model}/audio/vocals.wav"
|
| 423 |
+
inst = f"output/{split_model}/audio/no_vocals.wav"
|
| 424 |
+
logs.append("Audio splitting complete.")
|
| 425 |
+
yield "\n".join(logs), vocal, inst
|
| 426 |
+
|
| 427 |
+
def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume, split_model):
|
| 428 |
+
os.makedirs("output/result", exist_ok=True)
|
| 429 |
+
vocal_path = "output/result/output.wav"
|
| 430 |
+
output_path = "output/result/combine.mp3"
|
| 431 |
+
inst_path = f"output/{split_model}/audio/no_vocals.wav"
|
| 432 |
+
wavfile.write(vocal_path, audio_data[0], audio_data[1])
|
| 433 |
+
command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
|
| 434 |
+
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
|
| 435 |
+
print(result.stdout.decode())
|
| 436 |
+
return output_path
|
| 437 |
+
|
| 438 |
+
def download_and_extract_models(urls):
|
| 439 |
+
logs = []
|
| 440 |
+
os.makedirs("zips", exist_ok=True)
|
| 441 |
+
os.makedirs(os.path.join("zips", "extract"), exist_ok=True)
|
| 442 |
+
os.makedirs(os.path.join(weight_root), exist_ok=True)
|
| 443 |
+
os.makedirs(os.path.join(index_root), exist_ok=True)
|
| 444 |
+
for link in urls.splitlines():
|
| 445 |
+
url = link.strip()
|
| 446 |
+
if not url:
|
| 447 |
+
raise gr.Error("URL Required!")
|
| 448 |
+
return "No URLs provided."
|
| 449 |
+
model_zip = urlparse(url).path.split('/')[-2] + '.zip'
|
| 450 |
+
model_zip_path = os.path.join('zips', model_zip)
|
| 451 |
+
logs.append(f"Downloading...")
|
| 452 |
+
yield "\n".join(logs)
|
| 453 |
+
if "drive.google.com" in url:
|
| 454 |
+
gdown.download(url, os.path.join("zips", "extract"), quiet=False)
|
| 455 |
+
elif "mega.nz" in url:
|
| 456 |
+
m = Mega()
|
| 457 |
+
m.download_url(url, 'zips')
|
| 458 |
+
else:
|
| 459 |
+
os.system(f"wget {url} -O {model_zip_path}")
|
| 460 |
+
logs.append(f"Extracting...")
|
| 461 |
+
yield "\n".join(logs)
|
| 462 |
+
for filename in os.listdir("zips"):
|
| 463 |
+
archived_file = os.path.join("zips", filename)
|
| 464 |
+
if filename.endswith(".zip"):
|
| 465 |
+
shutil.unpack_archive(archived_file, os.path.join("zips", "extract"), 'zip')
|
| 466 |
+
elif filename.endswith(".rar"):
|
| 467 |
+
with rarfile.RarFile(archived_file, 'r') as rar:
|
| 468 |
+
rar.extractall(os.path.join("zips", "extract"))
|
| 469 |
+
for _, dirs, files in os.walk(os.path.join("zips", "extract")):
|
| 470 |
+
logs.append(f"Searching Model and Index...")
|
| 471 |
+
yield "\n".join(logs)
|
| 472 |
+
model = False
|
| 473 |
+
index = False
|
| 474 |
+
if files:
|
| 475 |
+
for file in files:
|
| 476 |
+
if file.endswith(".pth"):
|
| 477 |
+
basename = file[:-4]
|
| 478 |
+
shutil.move(os.path.join("zips", "extract", file), os.path.join(weight_root, file))
|
| 479 |
+
model = True
|
| 480 |
+
if file.endswith('.index') and "trained" not in file:
|
| 481 |
+
shutil.move(os.path.join("zips", "extract", file), os.path.join(index_root, file))
|
| 482 |
+
index = True
|
| 483 |
+
else:
|
| 484 |
+
logs.append("No model in main folder.")
|
| 485 |
+
yield "\n".join(logs)
|
| 486 |
+
logs.append("Searching in subfolders...")
|
| 487 |
+
yield "\n".join(logs)
|
| 488 |
+
for sub_dir in dirs:
|
| 489 |
+
for _, _, sub_files in os.walk(os.path.join("zips", "extract", sub_dir)):
|
| 490 |
+
for file in sub_files:
|
| 491 |
+
if file.endswith(".pth"):
|
| 492 |
+
basename = file[:-4]
|
| 493 |
+
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(weight_root, file))
|
| 494 |
+
model = True
|
| 495 |
+
if file.endswith('.index') and "trained" not in file:
|
| 496 |
+
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(index_root, file))
|
| 497 |
+
index = True
|
| 498 |
+
shutil.rmtree(os.path.join("zips", "extract", sub_dir))
|
| 499 |
+
if index is False:
|
| 500 |
+
logs.append("Model only file, no Index file detected.")
|
| 501 |
+
yield "\n".join(logs)
|
| 502 |
+
logs.append("Download Completed!")
|
| 503 |
+
yield "\n".join(logs)
|
| 504 |
+
logs.append("Successfully download all models! Refresh your model list to load the model")
|
| 505 |
+
yield "\n".join(logs)
|
| 506 |
+
|
| 507 |
+
def use_microphone(microphone):
|
| 508 |
+
if microphone == True:
|
| 509 |
+
return gr.Audio.update(source="microphone")
|
| 510 |
+
else:
|
| 511 |
+
return gr.Audio.update(source="upload")
|
| 512 |
+
|
| 513 |
+
def change_audio_mode(vc_audio_mode):
|
| 514 |
+
if vc_audio_mode == "Input path":
|
| 515 |
+
return (
|
| 516 |
+
# Input & Upload
|
| 517 |
+
gr.Textbox.update(visible=True),
|
| 518 |
+
gr.Checkbox.update(visible=False),
|
| 519 |
+
gr.Audio.update(visible=False),
|
| 520 |
+
# Youtube
|
| 521 |
+
gr.Dropdown.update(visible=False),
|
| 522 |
+
gr.Textbox.update(visible=False),
|
| 523 |
+
gr.Textbox.update(visible=False),
|
| 524 |
+
gr.Button.update(visible=False),
|
| 525 |
+
# Splitter
|
| 526 |
+
gr.Dropdown.update(visible=True),
|
| 527 |
+
gr.Textbox.update(visible=True),
|
| 528 |
+
gr.Button.update(visible=True),
|
| 529 |
+
gr.Button.update(visible=False),
|
| 530 |
+
gr.Audio.update(visible=False),
|
| 531 |
+
gr.Audio.update(visible=True),
|
| 532 |
+
gr.Audio.update(visible=True),
|
| 533 |
+
gr.Slider.update(visible=True),
|
| 534 |
+
gr.Slider.update(visible=True),
|
| 535 |
+
gr.Audio.update(visible=True),
|
| 536 |
+
gr.Button.update(visible=True),
|
| 537 |
+
# TTS
|
| 538 |
+
gr.Textbox.update(visible=False),
|
| 539 |
+
gr.Dropdown.update(visible=False)
|
| 540 |
+
)
|
| 541 |
+
elif vc_audio_mode == "Upload audio":
|
| 542 |
+
return (
|
| 543 |
+
# Input & Upload
|
| 544 |
+
gr.Textbox.update(visible=False),
|
| 545 |
+
gr.Checkbox.update(visible=True),
|
| 546 |
+
gr.Audio.update(visible=True),
|
| 547 |
+
# Youtube
|
| 548 |
+
gr.Dropdown.update(visible=False),
|
| 549 |
+
gr.Textbox.update(visible=False),
|
| 550 |
+
gr.Textbox.update(visible=False),
|
| 551 |
+
gr.Button.update(visible=False),
|
| 552 |
+
# Splitter
|
| 553 |
+
gr.Dropdown.update(visible=True),
|
| 554 |
+
gr.Textbox.update(visible=True),
|
| 555 |
+
gr.Button.update(visible=False),
|
| 556 |
+
gr.Button.update(visible=True),
|
| 557 |
+
gr.Audio.update(visible=False),
|
| 558 |
+
gr.Audio.update(visible=True),
|
| 559 |
+
gr.Audio.update(visible=True),
|
| 560 |
+
gr.Slider.update(visible=True),
|
| 561 |
+
gr.Slider.update(visible=True),
|
| 562 |
+
gr.Audio.update(visible=True),
|
| 563 |
+
gr.Button.update(visible=True),
|
| 564 |
+
# TTS
|
| 565 |
+
gr.Textbox.update(visible=False),
|
| 566 |
+
gr.Dropdown.update(visible=False)
|
| 567 |
+
)
|
| 568 |
+
elif vc_audio_mode == "Youtube":
|
| 569 |
+
return (
|
| 570 |
+
# Input & Upload
|
| 571 |
+
gr.Textbox.update(visible=False),
|
| 572 |
+
gr.Checkbox.update(visible=False),
|
| 573 |
+
gr.Audio.update(visible=False),
|
| 574 |
+
# Youtube
|
| 575 |
+
gr.Dropdown.update(visible=True),
|
| 576 |
+
gr.Textbox.update(visible=True),
|
| 577 |
+
gr.Textbox.update(visible=True),
|
| 578 |
+
gr.Button.update(visible=True),
|
| 579 |
+
# Splitter
|
| 580 |
+
gr.Dropdown.update(visible=True),
|
| 581 |
+
gr.Textbox.update(visible=True),
|
| 582 |
+
gr.Button.update(visible=True),
|
| 583 |
+
gr.Button.update(visible=False),
|
| 584 |
+
gr.Audio.update(visible=True),
|
| 585 |
+
gr.Audio.update(visible=True),
|
| 586 |
+
gr.Audio.update(visible=True),
|
| 587 |
+
gr.Slider.update(visible=True),
|
| 588 |
+
gr.Slider.update(visible=True),
|
| 589 |
+
gr.Audio.update(visible=True),
|
| 590 |
+
gr.Button.update(visible=True),
|
| 591 |
+
# TTS
|
| 592 |
+
gr.Textbox.update(visible=False),
|
| 593 |
+
gr.Dropdown.update(visible=False)
|
| 594 |
+
)
|
| 595 |
+
elif vc_audio_mode == "TTS Audio":
|
| 596 |
+
return (
|
| 597 |
+
# Input & Upload
|
| 598 |
+
gr.Textbox.update(visible=False),
|
| 599 |
+
gr.Checkbox.update(visible=False),
|
| 600 |
+
gr.Audio.update(visible=False),
|
| 601 |
+
# Youtube
|
| 602 |
+
gr.Dropdown.update(visible=False),
|
| 603 |
+
gr.Textbox.update(visible=False),
|
| 604 |
+
gr.Textbox.update(visible=False),
|
| 605 |
+
gr.Button.update(visible=False),
|
| 606 |
+
# Splitter
|
| 607 |
+
gr.Dropdown.update(visible=False),
|
| 608 |
+
gr.Textbox.update(visible=False),
|
| 609 |
+
gr.Button.update(visible=False),
|
| 610 |
+
gr.Button.update(visible=False),
|
| 611 |
+
gr.Audio.update(visible=False),
|
| 612 |
+
gr.Audio.update(visible=False),
|
| 613 |
+
gr.Audio.update(visible=False),
|
| 614 |
+
gr.Slider.update(visible=False),
|
| 615 |
+
gr.Slider.update(visible=False),
|
| 616 |
+
gr.Audio.update(visible=False),
|
| 617 |
+
gr.Button.update(visible=False),
|
| 618 |
+
# TTS
|
| 619 |
+
gr.Textbox.update(visible=True),
|
| 620 |
+
gr.Dropdown.update(visible=True)
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
with gr.Blocks() as app:
|
| 624 |
+
gr.Markdown(
|
| 625 |
+
"# <center> Advanced RVC Inference\n"
|
| 626 |
+
)
|
| 627 |
+
with gr.Row():
|
| 628 |
+
sid = gr.Dropdown(
|
| 629 |
+
label="Weight",
|
| 630 |
+
choices=sorted(weights_model),
|
| 631 |
+
)
|
| 632 |
+
file_index = gr.Dropdown(
|
| 633 |
+
label="List of index file",
|
| 634 |
+
choices=sorted(weights_index),
|
| 635 |
+
interactive=True,
|
| 636 |
+
)
|
| 637 |
+
spk_item = gr.Slider(
|
| 638 |
+
minimum=0,
|
| 639 |
+
maximum=2333,
|
| 640 |
+
step=1,
|
| 641 |
+
label="Speaker ID",
|
| 642 |
+
value=0,
|
| 643 |
+
visible=False,
|
| 644 |
+
interactive=True,
|
| 645 |
+
)
|
| 646 |
+
refresh_model = gr.Button("Refresh model list", variant="primary")
|
| 647 |
+
clean_button = gr.Button("Clear Model from memory", variant="primary")
|
| 648 |
+
refresh_model.click(
|
| 649 |
+
fn=check_models, inputs=[], outputs=[sid, file_index]
|
| 650 |
+
)
|
| 651 |
+
clean_button.click(fn=clean, inputs=[], outputs=[sid, spk_item])
|
| 652 |
+
with gr.TabItem("Inference"):
|
| 653 |
+
selected_model = gr.Markdown(value="# <center> No model selected")
|
| 654 |
+
with gr.Row():
|
| 655 |
+
with gr.Column():
|
| 656 |
+
vc_audio_mode = gr.Dropdown(label="Input voice", choices=["Input path", "Upload audio", "Youtube", "TTS Audio"], allow_custom_value=False, value="Upload audio")
|
| 657 |
+
# Input
|
| 658 |
+
vc_input = gr.Textbox(label="Input audio path", visible=False)
|
| 659 |
+
# Upload
|
| 660 |
+
vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True, interactive=True)
|
| 661 |
+
vc_upload = gr.Audio(label="Upload audio file", source="upload", visible=True, interactive=True)
|
| 662 |
+
# Youtube
|
| 663 |
+
vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
|
| 664 |
+
vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
|
| 665 |
+
vc_log_yt = gr.Textbox(label="Output Information", visible=False, interactive=False)
|
| 666 |
+
vc_download_button = gr.Button("Download Audio", variant="primary", visible=False)
|
| 667 |
+
vc_audio_preview = gr.Audio(label="Downloaded Audio Preview", visible=False)
|
| 668 |
+
# TTS
|
| 669 |
+
tts_text = gr.Textbox(label="TTS text", info="Text to speech input", visible=False)
|
| 670 |
+
tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
|
| 671 |
+
# Splitter
|
| 672 |
+
vc_split_model = gr.Dropdown(label="Splitter Model", choices=["hdemucs_mmi", "htdemucs", "htdemucs_ft", "mdx", "mdx_q", "mdx_extra_q"], allow_custom_value=False, visible=True, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
|
| 673 |
+
vc_split_log = gr.Textbox(label="Output Information", visible=True, interactive=False)
|
| 674 |
+
vc_split_yt = gr.Button("Split Audio", variant="primary", visible=False)
|
| 675 |
+
vc_split = gr.Button("Split Audio", variant="primary", visible=True)
|
| 676 |
+
vc_vocal_preview = gr.Audio(label="Vocal Preview", interactive=False, visible=True)
|
| 677 |
+
vc_inst_preview = gr.Audio(label="Instrumental Preview", interactive=False, visible=True)
|
| 678 |
+
with gr.Column():
|
| 679 |
+
vc_transform0 = gr.Number(
|
| 680 |
+
label="Transpose",
|
| 681 |
+
info='Type "12" to change from male to female convertion or Type "-12" to change female to male convertion.',
|
| 682 |
+
value=0
|
| 683 |
+
)
|
| 684 |
+
f0method0 = gr.Radio(
|
| 685 |
+
label="Pitch extraction algorithm",
|
| 686 |
+
info=f0method_info,
|
| 687 |
+
choices=f0method_mode,
|
| 688 |
+
value="pm",
|
| 689 |
+
interactive=True,
|
| 690 |
+
)
|
| 691 |
+
index_rate0 = gr.Slider(
|
| 692 |
+
minimum=0,
|
| 693 |
+
maximum=1,
|
| 694 |
+
label="Retrieval feature ratio",
|
| 695 |
+
value=0.7,
|
| 696 |
+
interactive=True,
|
| 697 |
+
)
|
| 698 |
+
filter_radius0 = gr.Slider(
|
| 699 |
+
minimum=0,
|
| 700 |
+
maximum=7,
|
| 701 |
+
label="Apply Median Filtering",
|
| 702 |
+
info="The value represents the filter radius and can reduce breathiness.",
|
| 703 |
+
value=3,
|
| 704 |
+
step=1,
|
| 705 |
+
interactive=True,
|
| 706 |
+
)
|
| 707 |
+
resample_sr0 = gr.Slider(
|
| 708 |
+
minimum=0,
|
| 709 |
+
maximum=48000,
|
| 710 |
+
label="Resample the output audio",
|
| 711 |
+
info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
|
| 712 |
+
value=0,
|
| 713 |
+
step=1,
|
| 714 |
+
interactive=True,
|
| 715 |
+
)
|
| 716 |
+
rms_mix_rate0 = gr.Slider(
|
| 717 |
+
minimum=0,
|
| 718 |
+
maximum=1,
|
| 719 |
+
label="Volume Envelope",
|
| 720 |
+
info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
|
| 721 |
+
value=1,
|
| 722 |
+
interactive=True,
|
| 723 |
+
)
|
| 724 |
+
protect0 = gr.Slider(
|
| 725 |
+
minimum=0,
|
| 726 |
+
maximum=0.5,
|
| 727 |
+
label="Voice Protection",
|
| 728 |
+
info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
|
| 729 |
+
value=0.5,
|
| 730 |
+
step=0.01,
|
| 731 |
+
interactive=True,
|
| 732 |
+
)
|
| 733 |
+
f0_file0 = gr.File(
|
| 734 |
+
label="F0 curve file (Optional)",
|
| 735 |
+
info="One pitch per line, Replace the default F0 and pitch modulation"
|
| 736 |
+
)
|
| 737 |
+
with gr.Column():
|
| 738 |
+
vc_log = gr.Textbox(label="Output Information", interactive=False)
|
| 739 |
+
vc_output = gr.Audio(label="Output Audio", interactive=False)
|
| 740 |
+
vc_convert = gr.Button("Convert", variant="primary")
|
| 741 |
+
vc_vocal_volume = gr.Slider(
|
| 742 |
+
minimum=0,
|
| 743 |
+
maximum=10,
|
| 744 |
+
label="Vocal volume",
|
| 745 |
+
value=1,
|
| 746 |
+
interactive=True,
|
| 747 |
+
step=1,
|
| 748 |
+
info="Adjust vocal volume (Default: 1}",
|
| 749 |
+
visible=True
|
| 750 |
+
)
|
| 751 |
+
vc_inst_volume = gr.Slider(
|
| 752 |
+
minimum=0,
|
| 753 |
+
maximum=10,
|
| 754 |
+
label="Instrument volume",
|
| 755 |
+
value=1,
|
| 756 |
+
interactive=True,
|
| 757 |
+
step=1,
|
| 758 |
+
info="Adjust instrument volume (Default: 1}",
|
| 759 |
+
visible=True
|
| 760 |
+
)
|
| 761 |
+
vc_combined_output = gr.Audio(label="Output Combined Audio", visible=True)
|
| 762 |
+
vc_combine = gr.Button("Combine",variant="primary", visible=True)
|
| 763 |
+
vc_convert.click(
|
| 764 |
+
vc_single,
|
| 765 |
+
[
|
| 766 |
+
spk_item,
|
| 767 |
+
vc_audio_mode,
|
| 768 |
+
vc_input,
|
| 769 |
+
vc_upload,
|
| 770 |
+
vc_vocal_preview,
|
| 771 |
+
tts_text,
|
| 772 |
+
tts_voice,
|
| 773 |
+
vc_transform0,
|
| 774 |
+
f0_file0,
|
| 775 |
+
f0method0,
|
| 776 |
+
file_index,
|
| 777 |
+
index_rate0,
|
| 778 |
+
filter_radius0,
|
| 779 |
+
resample_sr0,
|
| 780 |
+
rms_mix_rate0,
|
| 781 |
+
protect0,
|
| 782 |
+
],
|
| 783 |
+
[vc_log, vc_output],
|
| 784 |
+
)
|
| 785 |
+
vc_download_button.click(
|
| 786 |
+
fn=download_audio,
|
| 787 |
+
inputs=[vc_link, vc_download_audio],
|
| 788 |
+
outputs=[vc_audio_preview, vc_log_yt]
|
| 789 |
+
)
|
| 790 |
+
vc_split_yt.click(
|
| 791 |
+
fn=cut_vocal_and_inst_yt,
|
| 792 |
+
inputs=[vc_split_model],
|
| 793 |
+
outputs=[vc_split_log, vc_vocal_preview, vc_inst_preview, vc_input]
|
| 794 |
+
)
|
| 795 |
+
vc_split.click(
|
| 796 |
+
fn=cut_vocal_and_inst,
|
| 797 |
+
inputs=[vc_split_model, vc_upload],
|
| 798 |
+
outputs=[vc_split_log, vc_vocal_preview, vc_inst_preview]
|
| 799 |
+
)
|
| 800 |
+
vc_combine.click(
|
| 801 |
+
fn=combine_vocal_and_inst,
|
| 802 |
+
inputs=[vc_output, vc_vocal_volume, vc_inst_volume, vc_split_model],
|
| 803 |
+
outputs=[vc_combined_output]
|
| 804 |
+
)
|
| 805 |
+
vc_microphone_mode.change(
|
| 806 |
+
fn=use_microphone,
|
| 807 |
+
inputs=vc_microphone_mode,
|
| 808 |
+
outputs=vc_upload
|
| 809 |
+
)
|
| 810 |
+
vc_audio_mode.change(
|
| 811 |
+
fn=change_audio_mode,
|
| 812 |
+
inputs=[vc_audio_mode],
|
| 813 |
+
outputs=[
|
| 814 |
+
# Input & Upload
|
| 815 |
+
vc_input,
|
| 816 |
+
vc_microphone_mode,
|
| 817 |
+
vc_upload,
|
| 818 |
+
# Youtube
|
| 819 |
+
vc_download_audio,
|
| 820 |
+
vc_link,
|
| 821 |
+
vc_log_yt,
|
| 822 |
+
vc_download_button,
|
| 823 |
+
# Splitter
|
| 824 |
+
vc_split_model,
|
| 825 |
+
vc_split_log,
|
| 826 |
+
vc_split_yt,
|
| 827 |
+
vc_split,
|
| 828 |
+
vc_audio_preview,
|
| 829 |
+
vc_vocal_preview,
|
| 830 |
+
vc_inst_preview,
|
| 831 |
+
vc_vocal_volume,
|
| 832 |
+
vc_inst_volume,
|
| 833 |
+
vc_combined_output,
|
| 834 |
+
vc_combine,
|
| 835 |
+
# TTS
|
| 836 |
+
tts_text,
|
| 837 |
+
tts_voice
|
| 838 |
+
]
|
| 839 |
+
)
|
| 840 |
+
sid.change(fn=get_vc, inputs=[sid, protect0], outputs=[spk_item, protect0, file_index, selected_model])
|
| 841 |
+
with gr.TabItem("Batch Inference"):
|
| 842 |
+
with gr.Row():
|
| 843 |
+
with gr.Column():
|
| 844 |
+
vc_input_bat = gr.Textbox(label="Input audio path (folder)", visible=True)
|
| 845 |
+
vc_output_bat = gr.Textbox(label="Output audio path (folder)", value="result/batch", visible=True)
|
| 846 |
+
with gr.Column():
|
| 847 |
+
vc_transform0_bat = gr.Number(
|
| 848 |
+
label="Transpose",
|
| 849 |
+
info='Type "12" to change from male to female convertion or Type "-12" to change female to male convertion.',
|
| 850 |
+
value=0
|
| 851 |
+
)
|
| 852 |
+
f0method0_bat = gr.Radio(
|
| 853 |
+
label="Pitch extraction algorithm",
|
| 854 |
+
info=f0method_info,
|
| 855 |
+
choices=f0method_mode,
|
| 856 |
+
value="pm",
|
| 857 |
+
interactive=True,
|
| 858 |
+
)
|
| 859 |
+
index_rate0_bat = gr.Slider(
|
| 860 |
+
minimum=0,
|
| 861 |
+
maximum=1,
|
| 862 |
+
label="Retrieval feature ratio",
|
| 863 |
+
value=0.7,
|
| 864 |
+
interactive=True,
|
| 865 |
+
)
|
| 866 |
+
filter_radius0_bat = gr.Slider(
|
| 867 |
+
minimum=0,
|
| 868 |
+
maximum=7,
|
| 869 |
+
label="Apply Median Filtering",
|
| 870 |
+
info="The value represents the filter radius and can reduce breathiness.",
|
| 871 |
+
value=3,
|
| 872 |
+
step=1,
|
| 873 |
+
interactive=True,
|
| 874 |
+
)
|
| 875 |
+
resample_sr0_bat = gr.Slider(
|
| 876 |
+
minimum=0,
|
| 877 |
+
maximum=48000,
|
| 878 |
+
label="Resample the output audio",
|
| 879 |
+
info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
|
| 880 |
+
value=0,
|
| 881 |
+
step=1,
|
| 882 |
+
interactive=True,
|
| 883 |
+
)
|
| 884 |
+
rms_mix_rate0_bat = gr.Slider(
|
| 885 |
+
minimum=0,
|
| 886 |
+
maximum=1,
|
| 887 |
+
label="Volume Envelope",
|
| 888 |
+
info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
|
| 889 |
+
value=1,
|
| 890 |
+
interactive=True,
|
| 891 |
+
)
|
| 892 |
+
protect0_bat = gr.Slider(
|
| 893 |
+
minimum=0,
|
| 894 |
+
maximum=0.5,
|
| 895 |
+
label="Voice Protection",
|
| 896 |
+
info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
|
| 897 |
+
value=0.5,
|
| 898 |
+
step=0.01,
|
| 899 |
+
interactive=True,
|
| 900 |
+
)
|
| 901 |
+
with gr.Column():
|
| 902 |
+
vc_log_bat = gr.Textbox(label="Output Information", interactive=False)
|
| 903 |
+
vc_convert_bat = gr.Button("Convert", variant="primary")
|
| 904 |
+
vc_convert_bat.click(
|
| 905 |
+
vc_multi,
|
| 906 |
+
[
|
| 907 |
+
spk_item,
|
| 908 |
+
vc_input_bat,
|
| 909 |
+
vc_output_bat,
|
| 910 |
+
vc_transform0_bat,
|
| 911 |
+
f0method0_bat,
|
| 912 |
+
file_index,
|
| 913 |
+
index_rate0_bat,
|
| 914 |
+
filter_radius0_bat,
|
| 915 |
+
resample_sr0_bat,
|
| 916 |
+
rms_mix_rate0_bat,
|
| 917 |
+
protect0_bat,
|
| 918 |
+
],
|
| 919 |
+
[vc_log_bat],
|
| 920 |
+
)
|
| 921 |
+
with gr.TabItem("Model Downloader"):
|
| 922 |
+
gr.Markdown(
|
| 923 |
+
"# <center> Model Downloader (Beta)\n"+
|
| 924 |
+
"#### <center> To download multi link you have to put your link to the textbox and every link separated by space\n"+
|
| 925 |
+
"#### <center> Support Direct Link, Mega, Google Drive, etc"
|
| 926 |
+
)
|
| 927 |
+
with gr.Column():
|
| 928 |
+
md_text = gr.Textbox(label="URL")
|
| 929 |
+
with gr.Row():
|
| 930 |
+
md_download = gr.Button(label="Convert", variant="primary")
|
| 931 |
+
md_download_logs = gr.Textbox(label="Output information", interactive=False)
|
| 932 |
+
md_download.click(
|
| 933 |
+
fn=download_and_extract_models,
|
| 934 |
+
inputs=[md_text],
|
| 935 |
+
outputs=[md_download_logs]
|
| 936 |
+
)
|
| 937 |
+
with gr.TabItem("Settings"):
|
| 938 |
+
gr.Markdown(
|
| 939 |
+
"# <center> Settings\n"+
|
| 940 |
+
"#### <center> Work in progress"
|
| 941 |
+
)
|
| 942 |
+
app.queue(concurrency_count=1, max_size=50, api_open=config.api).launch(share=config.colab)
|
requirements.txt
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
wheel
|
| 2 |
+
setuptools
|
| 3 |
+
ffmpeg
|
| 4 |
+
numba==0.56.4
|
| 5 |
+
numpy==1.23.5
|
| 6 |
+
scipy==1.9.3
|
| 7 |
+
librosa==0.9.1
|
| 8 |
+
fairseq==0.12.2
|
| 9 |
+
faiss-cpu==1.7.3
|
| 10 |
+
gradio==3.40.1
|
| 11 |
+
pyworld==0.3.2
|
| 12 |
+
soundfile>=0.12.1
|
| 13 |
+
praat-parselmouth>=0.4.2
|
| 14 |
+
httpx==0.23.0
|
| 15 |
+
tensorboard
|
| 16 |
+
tensorboardX
|
| 17 |
+
torchcrepe
|
| 18 |
+
onnxruntime
|
| 19 |
+
asyncio
|
| 20 |
+
demucs
|
| 21 |
+
edge-tts
|
| 22 |
+
yt_dlp
|
| 23 |
+
rarfile
|
| 24 |
+
mega.py
|
| 25 |
+
gdown
|
rmvpe.py
ADDED
|
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys, torch, numpy as np, traceback, pdb
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from time import time as ttime
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class BiGRU(nn.Module):
|
| 8 |
+
def __init__(self, input_features, hidden_features, num_layers):
|
| 9 |
+
super(BiGRU, self).__init__()
|
| 10 |
+
self.gru = nn.GRU(
|
| 11 |
+
input_features,
|
| 12 |
+
hidden_features,
|
| 13 |
+
num_layers=num_layers,
|
| 14 |
+
batch_first=True,
|
| 15 |
+
bidirectional=True,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
def forward(self, x):
|
| 19 |
+
return self.gru(x)[0]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class ConvBlockRes(nn.Module):
|
| 23 |
+
def __init__(self, in_channels, out_channels, momentum=0.01):
|
| 24 |
+
super(ConvBlockRes, self).__init__()
|
| 25 |
+
self.conv = nn.Sequential(
|
| 26 |
+
nn.Conv2d(
|
| 27 |
+
in_channels=in_channels,
|
| 28 |
+
out_channels=out_channels,
|
| 29 |
+
kernel_size=(3, 3),
|
| 30 |
+
stride=(1, 1),
|
| 31 |
+
padding=(1, 1),
|
| 32 |
+
bias=False,
|
| 33 |
+
),
|
| 34 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
| 35 |
+
nn.ReLU(),
|
| 36 |
+
nn.Conv2d(
|
| 37 |
+
in_channels=out_channels,
|
| 38 |
+
out_channels=out_channels,
|
| 39 |
+
kernel_size=(3, 3),
|
| 40 |
+
stride=(1, 1),
|
| 41 |
+
padding=(1, 1),
|
| 42 |
+
bias=False,
|
| 43 |
+
),
|
| 44 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
| 45 |
+
nn.ReLU(),
|
| 46 |
+
)
|
| 47 |
+
if in_channels != out_channels:
|
| 48 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
| 49 |
+
self.is_shortcut = True
|
| 50 |
+
else:
|
| 51 |
+
self.is_shortcut = False
|
| 52 |
+
|
| 53 |
+
def forward(self, x):
|
| 54 |
+
if self.is_shortcut:
|
| 55 |
+
return self.conv(x) + self.shortcut(x)
|
| 56 |
+
else:
|
| 57 |
+
return self.conv(x) + x
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class Encoder(nn.Module):
|
| 61 |
+
def __init__(
|
| 62 |
+
self,
|
| 63 |
+
in_channels,
|
| 64 |
+
in_size,
|
| 65 |
+
n_encoders,
|
| 66 |
+
kernel_size,
|
| 67 |
+
n_blocks,
|
| 68 |
+
out_channels=16,
|
| 69 |
+
momentum=0.01,
|
| 70 |
+
):
|
| 71 |
+
super(Encoder, self).__init__()
|
| 72 |
+
self.n_encoders = n_encoders
|
| 73 |
+
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
| 74 |
+
self.layers = nn.ModuleList()
|
| 75 |
+
self.latent_channels = []
|
| 76 |
+
for i in range(self.n_encoders):
|
| 77 |
+
self.layers.append(
|
| 78 |
+
ResEncoderBlock(
|
| 79 |
+
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
| 80 |
+
)
|
| 81 |
+
)
|
| 82 |
+
self.latent_channels.append([out_channels, in_size])
|
| 83 |
+
in_channels = out_channels
|
| 84 |
+
out_channels *= 2
|
| 85 |
+
in_size //= 2
|
| 86 |
+
self.out_size = in_size
|
| 87 |
+
self.out_channel = out_channels
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
concat_tensors = []
|
| 91 |
+
x = self.bn(x)
|
| 92 |
+
for i in range(self.n_encoders):
|
| 93 |
+
_, x = self.layers[i](x)
|
| 94 |
+
concat_tensors.append(_)
|
| 95 |
+
return x, concat_tensors
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class ResEncoderBlock(nn.Module):
|
| 99 |
+
def __init__(
|
| 100 |
+
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
| 101 |
+
):
|
| 102 |
+
super(ResEncoderBlock, self).__init__()
|
| 103 |
+
self.n_blocks = n_blocks
|
| 104 |
+
self.conv = nn.ModuleList()
|
| 105 |
+
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
| 106 |
+
for i in range(n_blocks - 1):
|
| 107 |
+
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
| 108 |
+
self.kernel_size = kernel_size
|
| 109 |
+
if self.kernel_size is not None:
|
| 110 |
+
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
| 111 |
+
|
| 112 |
+
def forward(self, x):
|
| 113 |
+
for i in range(self.n_blocks):
|
| 114 |
+
x = self.conv[i](x)
|
| 115 |
+
if self.kernel_size is not None:
|
| 116 |
+
return x, self.pool(x)
|
| 117 |
+
else:
|
| 118 |
+
return x
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class Intermediate(nn.Module): #
|
| 122 |
+
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
| 123 |
+
super(Intermediate, self).__init__()
|
| 124 |
+
self.n_inters = n_inters
|
| 125 |
+
self.layers = nn.ModuleList()
|
| 126 |
+
self.layers.append(
|
| 127 |
+
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
| 128 |
+
)
|
| 129 |
+
for i in range(self.n_inters - 1):
|
| 130 |
+
self.layers.append(
|
| 131 |
+
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
def forward(self, x):
|
| 135 |
+
for i in range(self.n_inters):
|
| 136 |
+
x = self.layers[i](x)
|
| 137 |
+
return x
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class ResDecoderBlock(nn.Module):
|
| 141 |
+
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
| 142 |
+
super(ResDecoderBlock, self).__init__()
|
| 143 |
+
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
| 144 |
+
self.n_blocks = n_blocks
|
| 145 |
+
self.conv1 = nn.Sequential(
|
| 146 |
+
nn.ConvTranspose2d(
|
| 147 |
+
in_channels=in_channels,
|
| 148 |
+
out_channels=out_channels,
|
| 149 |
+
kernel_size=(3, 3),
|
| 150 |
+
stride=stride,
|
| 151 |
+
padding=(1, 1),
|
| 152 |
+
output_padding=out_padding,
|
| 153 |
+
bias=False,
|
| 154 |
+
),
|
| 155 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
| 156 |
+
nn.ReLU(),
|
| 157 |
+
)
|
| 158 |
+
self.conv2 = nn.ModuleList()
|
| 159 |
+
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
| 160 |
+
for i in range(n_blocks - 1):
|
| 161 |
+
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
| 162 |
+
|
| 163 |
+
def forward(self, x, concat_tensor):
|
| 164 |
+
x = self.conv1(x)
|
| 165 |
+
x = torch.cat((x, concat_tensor), dim=1)
|
| 166 |
+
for i in range(self.n_blocks):
|
| 167 |
+
x = self.conv2[i](x)
|
| 168 |
+
return x
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class Decoder(nn.Module):
|
| 172 |
+
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
| 173 |
+
super(Decoder, self).__init__()
|
| 174 |
+
self.layers = nn.ModuleList()
|
| 175 |
+
self.n_decoders = n_decoders
|
| 176 |
+
for i in range(self.n_decoders):
|
| 177 |
+
out_channels = in_channels // 2
|
| 178 |
+
self.layers.append(
|
| 179 |
+
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
| 180 |
+
)
|
| 181 |
+
in_channels = out_channels
|
| 182 |
+
|
| 183 |
+
def forward(self, x, concat_tensors):
|
| 184 |
+
for i in range(self.n_decoders):
|
| 185 |
+
x = self.layers[i](x, concat_tensors[-1 - i])
|
| 186 |
+
return x
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
class DeepUnet(nn.Module):
|
| 190 |
+
def __init__(
|
| 191 |
+
self,
|
| 192 |
+
kernel_size,
|
| 193 |
+
n_blocks,
|
| 194 |
+
en_de_layers=5,
|
| 195 |
+
inter_layers=4,
|
| 196 |
+
in_channels=1,
|
| 197 |
+
en_out_channels=16,
|
| 198 |
+
):
|
| 199 |
+
super(DeepUnet, self).__init__()
|
| 200 |
+
self.encoder = Encoder(
|
| 201 |
+
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
| 202 |
+
)
|
| 203 |
+
self.intermediate = Intermediate(
|
| 204 |
+
self.encoder.out_channel // 2,
|
| 205 |
+
self.encoder.out_channel,
|
| 206 |
+
inter_layers,
|
| 207 |
+
n_blocks,
|
| 208 |
+
)
|
| 209 |
+
self.decoder = Decoder(
|
| 210 |
+
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
def forward(self, x):
|
| 214 |
+
x, concat_tensors = self.encoder(x)
|
| 215 |
+
x = self.intermediate(x)
|
| 216 |
+
x = self.decoder(x, concat_tensors)
|
| 217 |
+
return x
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
class E2E(nn.Module):
|
| 221 |
+
def __init__(
|
| 222 |
+
self,
|
| 223 |
+
n_blocks,
|
| 224 |
+
n_gru,
|
| 225 |
+
kernel_size,
|
| 226 |
+
en_de_layers=5,
|
| 227 |
+
inter_layers=4,
|
| 228 |
+
in_channels=1,
|
| 229 |
+
en_out_channels=16,
|
| 230 |
+
):
|
| 231 |
+
super(E2E, self).__init__()
|
| 232 |
+
self.unet = DeepUnet(
|
| 233 |
+
kernel_size,
|
| 234 |
+
n_blocks,
|
| 235 |
+
en_de_layers,
|
| 236 |
+
inter_layers,
|
| 237 |
+
in_channels,
|
| 238 |
+
en_out_channels,
|
| 239 |
+
)
|
| 240 |
+
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
| 241 |
+
if n_gru:
|
| 242 |
+
self.fc = nn.Sequential(
|
| 243 |
+
BiGRU(3 * 128, 256, n_gru),
|
| 244 |
+
nn.Linear(512, 360),
|
| 245 |
+
nn.Dropout(0.25),
|
| 246 |
+
nn.Sigmoid(),
|
| 247 |
+
)
|
| 248 |
+
else:
|
| 249 |
+
self.fc = nn.Sequential(
|
| 250 |
+
nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
def forward(self, mel):
|
| 254 |
+
mel = mel.transpose(-1, -2).unsqueeze(1)
|
| 255 |
+
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
| 256 |
+
x = self.fc(x)
|
| 257 |
+
return x
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
from librosa.filters import mel
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
class MelSpectrogram(torch.nn.Module):
|
| 264 |
+
def __init__(
|
| 265 |
+
self,
|
| 266 |
+
is_half,
|
| 267 |
+
n_mel_channels,
|
| 268 |
+
sampling_rate,
|
| 269 |
+
win_length,
|
| 270 |
+
hop_length,
|
| 271 |
+
n_fft=None,
|
| 272 |
+
mel_fmin=0,
|
| 273 |
+
mel_fmax=None,
|
| 274 |
+
clamp=1e-5,
|
| 275 |
+
):
|
| 276 |
+
super().__init__()
|
| 277 |
+
n_fft = win_length if n_fft is None else n_fft
|
| 278 |
+
self.hann_window = {}
|
| 279 |
+
mel_basis = mel(
|
| 280 |
+
sr=sampling_rate,
|
| 281 |
+
n_fft=n_fft,
|
| 282 |
+
n_mels=n_mel_channels,
|
| 283 |
+
fmin=mel_fmin,
|
| 284 |
+
fmax=mel_fmax,
|
| 285 |
+
htk=True,
|
| 286 |
+
)
|
| 287 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
| 288 |
+
self.register_buffer("mel_basis", mel_basis)
|
| 289 |
+
self.n_fft = win_length if n_fft is None else n_fft
|
| 290 |
+
self.hop_length = hop_length
|
| 291 |
+
self.win_length = win_length
|
| 292 |
+
self.sampling_rate = sampling_rate
|
| 293 |
+
self.n_mel_channels = n_mel_channels
|
| 294 |
+
self.clamp = clamp
|
| 295 |
+
self.is_half = is_half
|
| 296 |
+
|
| 297 |
+
def forward(self, audio, keyshift=0, speed=1, center=True):
|
| 298 |
+
factor = 2 ** (keyshift / 12)
|
| 299 |
+
n_fft_new = int(np.round(self.n_fft * factor))
|
| 300 |
+
win_length_new = int(np.round(self.win_length * factor))
|
| 301 |
+
hop_length_new = int(np.round(self.hop_length * speed))
|
| 302 |
+
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
| 303 |
+
if keyshift_key not in self.hann_window:
|
| 304 |
+
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
| 305 |
+
audio.device
|
| 306 |
+
)
|
| 307 |
+
fft = torch.stft(
|
| 308 |
+
audio,
|
| 309 |
+
n_fft=n_fft_new,
|
| 310 |
+
hop_length=hop_length_new,
|
| 311 |
+
win_length=win_length_new,
|
| 312 |
+
window=self.hann_window[keyshift_key],
|
| 313 |
+
center=center,
|
| 314 |
+
return_complex=True,
|
| 315 |
+
)
|
| 316 |
+
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
| 317 |
+
if keyshift != 0:
|
| 318 |
+
size = self.n_fft // 2 + 1
|
| 319 |
+
resize = magnitude.size(1)
|
| 320 |
+
if resize < size:
|
| 321 |
+
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
| 322 |
+
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
| 323 |
+
mel_output = torch.matmul(self.mel_basis, magnitude)
|
| 324 |
+
if self.is_half == True:
|
| 325 |
+
mel_output = mel_output.half()
|
| 326 |
+
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
| 327 |
+
return log_mel_spec
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class RMVPE:
|
| 331 |
+
def __init__(self, model_path, is_half, device=None):
|
| 332 |
+
self.resample_kernel = {}
|
| 333 |
+
model = E2E(4, 1, (2, 2))
|
| 334 |
+
ckpt = torch.load(model_path, map_location="cpu")
|
| 335 |
+
model.load_state_dict(ckpt)
|
| 336 |
+
model.eval()
|
| 337 |
+
if is_half == True:
|
| 338 |
+
model = model.half()
|
| 339 |
+
self.model = model
|
| 340 |
+
self.resample_kernel = {}
|
| 341 |
+
self.is_half = is_half
|
| 342 |
+
if device is None:
|
| 343 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 344 |
+
self.device = device
|
| 345 |
+
self.mel_extractor = MelSpectrogram(
|
| 346 |
+
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
| 347 |
+
).to(device)
|
| 348 |
+
self.model = self.model.to(device)
|
| 349 |
+
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
| 350 |
+
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
| 351 |
+
|
| 352 |
+
def mel2hidden(self, mel):
|
| 353 |
+
with torch.no_grad():
|
| 354 |
+
n_frames = mel.shape[-1]
|
| 355 |
+
mel = F.pad(
|
| 356 |
+
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
|
| 357 |
+
)
|
| 358 |
+
hidden = self.model(mel)
|
| 359 |
+
return hidden[:, :n_frames]
|
| 360 |
+
|
| 361 |
+
def decode(self, hidden, thred=0.03):
|
| 362 |
+
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
| 363 |
+
f0 = 10 * (2 ** (cents_pred / 1200))
|
| 364 |
+
f0[f0 == 10] = 0
|
| 365 |
+
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
| 366 |
+
return f0
|
| 367 |
+
|
| 368 |
+
def infer_from_audio(self, audio, thred=0.03):
|
| 369 |
+
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
|
| 370 |
+
# torch.cuda.synchronize()
|
| 371 |
+
# t0=ttime()
|
| 372 |
+
mel = self.mel_extractor(audio, center=True)
|
| 373 |
+
# torch.cuda.synchronize()
|
| 374 |
+
# t1=ttime()
|
| 375 |
+
hidden = self.mel2hidden(mel)
|
| 376 |
+
# torch.cuda.synchronize()
|
| 377 |
+
# t2=ttime()
|
| 378 |
+
hidden = hidden.squeeze(0).cpu().numpy()
|
| 379 |
+
if self.is_half == True:
|
| 380 |
+
hidden = hidden.astype("float32")
|
| 381 |
+
f0 = self.decode(hidden, thred=thred)
|
| 382 |
+
# torch.cuda.synchronize()
|
| 383 |
+
# t3=ttime()
|
| 384 |
+
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
| 385 |
+
return f0
|
| 386 |
+
|
| 387 |
+
def to_local_average_cents(self, salience, thred=0.05):
|
| 388 |
+
# t0 = ttime()
|
| 389 |
+
center = np.argmax(salience, axis=1) # 帧长#index
|
| 390 |
+
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
| 391 |
+
# t1 = ttime()
|
| 392 |
+
center += 4
|
| 393 |
+
todo_salience = []
|
| 394 |
+
todo_cents_mapping = []
|
| 395 |
+
starts = center - 4
|
| 396 |
+
ends = center + 5
|
| 397 |
+
for idx in range(salience.shape[0]):
|
| 398 |
+
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
| 399 |
+
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
| 400 |
+
# t2 = ttime()
|
| 401 |
+
todo_salience = np.array(todo_salience) # 帧长,9
|
| 402 |
+
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
| 403 |
+
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
| 404 |
+
weight_sum = np.sum(todo_salience, 1) # 帧长
|
| 405 |
+
devided = product_sum / weight_sum # 帧长
|
| 406 |
+
# t3 = ttime()
|
| 407 |
+
maxx = np.max(salience, axis=1) # 帧长
|
| 408 |
+
devided[maxx <= thred] = 0
|
| 409 |
+
# t4 = ttime()
|
| 410 |
+
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
| 411 |
+
return devided
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
# if __name__ == '__main__':
|
| 415 |
+
# audio, sampling_rate = sf.read("卢本伟语录~1.wav")
|
| 416 |
+
# if len(audio.shape) > 1:
|
| 417 |
+
# audio = librosa.to_mono(audio.transpose(1, 0))
|
| 418 |
+
# audio_bak = audio.copy()
|
| 419 |
+
# if sampling_rate != 16000:
|
| 420 |
+
# audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
| 421 |
+
# model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/test-RMVPE/weights/rmvpe_llc_half.pt"
|
| 422 |
+
# thred = 0.03 # 0.01
|
| 423 |
+
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 424 |
+
# rmvpe = RMVPE(model_path,is_half=False, device=device)
|
| 425 |
+
# t0=ttime()
|
| 426 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
| 427 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
| 428 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
| 429 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
| 430 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
| 431 |
+
# t1=ttime()
|
| 432 |
+
# print(f0.shape,t1-t0)
|
vc_infer_pipeline.py
ADDED
|
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np, parselmouth, torch, pdb, sys, os
|
| 2 |
+
from time import time as ttime
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import scipy.signal as signal
|
| 5 |
+
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
| 6 |
+
from scipy import signal
|
| 7 |
+
from functools import lru_cache
|
| 8 |
+
|
| 9 |
+
now_dir = os.getcwd()
|
| 10 |
+
sys.path.append(now_dir)
|
| 11 |
+
|
| 12 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
| 13 |
+
|
| 14 |
+
input_audio_path2wav = {}
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@lru_cache
|
| 18 |
+
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
| 19 |
+
audio = input_audio_path2wav[input_audio_path]
|
| 20 |
+
f0, t = pyworld.harvest(
|
| 21 |
+
audio,
|
| 22 |
+
fs=fs,
|
| 23 |
+
f0_ceil=f0max,
|
| 24 |
+
f0_floor=f0min,
|
| 25 |
+
frame_period=frame_period,
|
| 26 |
+
)
|
| 27 |
+
f0 = pyworld.stonemask(audio, f0, t, fs)
|
| 28 |
+
return f0
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
|
| 32 |
+
# print(data1.max(),data2.max())
|
| 33 |
+
rms1 = librosa.feature.rms(
|
| 34 |
+
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
| 35 |
+
) # 每半秒一个点
|
| 36 |
+
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
| 37 |
+
rms1 = torch.from_numpy(rms1)
|
| 38 |
+
rms1 = F.interpolate(
|
| 39 |
+
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
| 40 |
+
).squeeze()
|
| 41 |
+
rms2 = torch.from_numpy(rms2)
|
| 42 |
+
rms2 = F.interpolate(
|
| 43 |
+
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
| 44 |
+
).squeeze()
|
| 45 |
+
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
| 46 |
+
data2 *= (
|
| 47 |
+
torch.pow(rms1, torch.tensor(1 - rate))
|
| 48 |
+
* torch.pow(rms2, torch.tensor(rate - 1))
|
| 49 |
+
).numpy()
|
| 50 |
+
return data2
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class VC(object):
|
| 54 |
+
def __init__(self, tgt_sr, config):
|
| 55 |
+
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
| 56 |
+
config.x_pad,
|
| 57 |
+
config.x_query,
|
| 58 |
+
config.x_center,
|
| 59 |
+
config.x_max,
|
| 60 |
+
config.is_half,
|
| 61 |
+
)
|
| 62 |
+
self.sr = 16000 # hubert输入采样率
|
| 63 |
+
self.window = 160 # 每帧点数
|
| 64 |
+
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
|
| 65 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
| 66 |
+
self.t_pad2 = self.t_pad * 2
|
| 67 |
+
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
|
| 68 |
+
self.t_center = self.sr * self.x_center # 查询切点位置
|
| 69 |
+
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
| 70 |
+
self.device = config.device
|
| 71 |
+
|
| 72 |
+
def get_f0(
|
| 73 |
+
self,
|
| 74 |
+
input_audio_path,
|
| 75 |
+
x,
|
| 76 |
+
p_len,
|
| 77 |
+
f0_up_key,
|
| 78 |
+
f0_method,
|
| 79 |
+
filter_radius,
|
| 80 |
+
inp_f0=None,
|
| 81 |
+
):
|
| 82 |
+
global input_audio_path2wav
|
| 83 |
+
time_step = self.window / self.sr * 1000
|
| 84 |
+
f0_min = 50
|
| 85 |
+
f0_max = 1100
|
| 86 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 87 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 88 |
+
if f0_method == "pm":
|
| 89 |
+
f0 = (
|
| 90 |
+
parselmouth.Sound(x, self.sr)
|
| 91 |
+
.to_pitch_ac(
|
| 92 |
+
time_step=time_step / 1000,
|
| 93 |
+
voicing_threshold=0.6,
|
| 94 |
+
pitch_floor=f0_min,
|
| 95 |
+
pitch_ceiling=f0_max,
|
| 96 |
+
)
|
| 97 |
+
.selected_array["frequency"]
|
| 98 |
+
)
|
| 99 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
| 100 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
| 101 |
+
f0 = np.pad(
|
| 102 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
| 103 |
+
)
|
| 104 |
+
elif f0_method == "harvest":
|
| 105 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
| 106 |
+
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
| 107 |
+
if filter_radius > 2:
|
| 108 |
+
f0 = signal.medfilt(f0, 3)
|
| 109 |
+
elif f0_method == "crepe":
|
| 110 |
+
model = "full"
|
| 111 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
| 112 |
+
batch_size = 512
|
| 113 |
+
# Compute pitch using first gpu
|
| 114 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
| 115 |
+
f0, pd = torchcrepe.predict(
|
| 116 |
+
audio,
|
| 117 |
+
self.sr,
|
| 118 |
+
self.window,
|
| 119 |
+
f0_min,
|
| 120 |
+
f0_max,
|
| 121 |
+
model,
|
| 122 |
+
batch_size=batch_size,
|
| 123 |
+
device=self.device,
|
| 124 |
+
return_periodicity=True,
|
| 125 |
+
)
|
| 126 |
+
pd = torchcrepe.filter.median(pd, 3)
|
| 127 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
| 128 |
+
f0[pd < 0.1] = 0
|
| 129 |
+
f0 = f0[0].cpu().numpy()
|
| 130 |
+
elif f0_method == "rmvpe":
|
| 131 |
+
if hasattr(self, "model_rmvpe") == False:
|
| 132 |
+
from rmvpe import RMVPE
|
| 133 |
+
|
| 134 |
+
print("loading rmvpe model")
|
| 135 |
+
self.model_rmvpe = RMVPE(
|
| 136 |
+
"rmvpe.pt", is_half=self.is_half, device=self.device
|
| 137 |
+
)
|
| 138 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
| 139 |
+
f0 *= pow(2, f0_up_key / 12)
|
| 140 |
+
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 141 |
+
tf0 = self.sr // self.window # 每秒f0点数
|
| 142 |
+
if inp_f0 is not None:
|
| 143 |
+
delta_t = np.round(
|
| 144 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
| 145 |
+
).astype("int16")
|
| 146 |
+
replace_f0 = np.interp(
|
| 147 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
| 148 |
+
)
|
| 149 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
| 150 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
| 151 |
+
:shape
|
| 152 |
+
]
|
| 153 |
+
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 154 |
+
f0bak = f0.copy()
|
| 155 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
| 156 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
| 157 |
+
f0_mel_max - f0_mel_min
|
| 158 |
+
) + 1
|
| 159 |
+
f0_mel[f0_mel <= 1] = 1
|
| 160 |
+
f0_mel[f0_mel > 255] = 255
|
| 161 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
| 162 |
+
return f0_coarse, f0bak # 1-0
|
| 163 |
+
|
| 164 |
+
def vc(
|
| 165 |
+
self,
|
| 166 |
+
model,
|
| 167 |
+
net_g,
|
| 168 |
+
sid,
|
| 169 |
+
audio0,
|
| 170 |
+
pitch,
|
| 171 |
+
pitchf,
|
| 172 |
+
times,
|
| 173 |
+
index,
|
| 174 |
+
big_npy,
|
| 175 |
+
index_rate,
|
| 176 |
+
version,
|
| 177 |
+
protect,
|
| 178 |
+
): # ,file_index,file_big_npy
|
| 179 |
+
feats = torch.from_numpy(audio0)
|
| 180 |
+
if self.is_half:
|
| 181 |
+
feats = feats.half()
|
| 182 |
+
else:
|
| 183 |
+
feats = feats.float()
|
| 184 |
+
if feats.dim() == 2: # double channels
|
| 185 |
+
feats = feats.mean(-1)
|
| 186 |
+
assert feats.dim() == 1, feats.dim()
|
| 187 |
+
feats = feats.view(1, -1)
|
| 188 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
| 189 |
+
|
| 190 |
+
inputs = {
|
| 191 |
+
"source": feats.to(self.device),
|
| 192 |
+
"padding_mask": padding_mask,
|
| 193 |
+
"output_layer": 9 if version == "v1" else 12,
|
| 194 |
+
}
|
| 195 |
+
t0 = ttime()
|
| 196 |
+
with torch.no_grad():
|
| 197 |
+
logits = model.extract_features(**inputs)
|
| 198 |
+
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
| 199 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
| 200 |
+
feats0 = feats.clone()
|
| 201 |
+
if (
|
| 202 |
+
isinstance(index, type(None)) == False
|
| 203 |
+
and isinstance(big_npy, type(None)) == False
|
| 204 |
+
and index_rate != 0
|
| 205 |
+
):
|
| 206 |
+
npy = feats[0].cpu().numpy()
|
| 207 |
+
if self.is_half:
|
| 208 |
+
npy = npy.astype("float32")
|
| 209 |
+
|
| 210 |
+
# _, I = index.search(npy, 1)
|
| 211 |
+
# npy = big_npy[I.squeeze()]
|
| 212 |
+
|
| 213 |
+
score, ix = index.search(npy, k=8)
|
| 214 |
+
weight = np.square(1 / score)
|
| 215 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
| 216 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
| 217 |
+
|
| 218 |
+
if self.is_half:
|
| 219 |
+
npy = npy.astype("float16")
|
| 220 |
+
feats = (
|
| 221 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
| 222 |
+
+ (1 - index_rate) * feats
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
| 226 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
| 227 |
+
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
| 228 |
+
0, 2, 1
|
| 229 |
+
)
|
| 230 |
+
t1 = ttime()
|
| 231 |
+
p_len = audio0.shape[0] // self.window
|
| 232 |
+
if feats.shape[1] < p_len:
|
| 233 |
+
p_len = feats.shape[1]
|
| 234 |
+
if pitch != None and pitchf != None:
|
| 235 |
+
pitch = pitch[:, :p_len]
|
| 236 |
+
pitchf = pitchf[:, :p_len]
|
| 237 |
+
|
| 238 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
| 239 |
+
pitchff = pitchf.clone()
|
| 240 |
+
pitchff[pitchf > 0] = 1
|
| 241 |
+
pitchff[pitchf < 1] = protect
|
| 242 |
+
pitchff = pitchff.unsqueeze(-1)
|
| 243 |
+
feats = feats * pitchff + feats0 * (1 - pitchff)
|
| 244 |
+
feats = feats.to(feats0.dtype)
|
| 245 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
| 246 |
+
with torch.no_grad():
|
| 247 |
+
if pitch != None and pitchf != None:
|
| 248 |
+
audio1 = (
|
| 249 |
+
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
|
| 250 |
+
.data.cpu()
|
| 251 |
+
.float()
|
| 252 |
+
.numpy()
|
| 253 |
+
)
|
| 254 |
+
else:
|
| 255 |
+
audio1 = (
|
| 256 |
+
(net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
|
| 257 |
+
)
|
| 258 |
+
del feats, p_len, padding_mask
|
| 259 |
+
if torch.cuda.is_available():
|
| 260 |
+
torch.cuda.empty_cache()
|
| 261 |
+
t2 = ttime()
|
| 262 |
+
times[0] += t1 - t0
|
| 263 |
+
times[2] += t2 - t1
|
| 264 |
+
return audio1
|
| 265 |
+
|
| 266 |
+
def pipeline(
|
| 267 |
+
self,
|
| 268 |
+
model,
|
| 269 |
+
net_g,
|
| 270 |
+
sid,
|
| 271 |
+
audio,
|
| 272 |
+
input_audio_path,
|
| 273 |
+
times,
|
| 274 |
+
f0_up_key,
|
| 275 |
+
f0_method,
|
| 276 |
+
file_index,
|
| 277 |
+
# file_big_npy,
|
| 278 |
+
index_rate,
|
| 279 |
+
if_f0,
|
| 280 |
+
filter_radius,
|
| 281 |
+
tgt_sr,
|
| 282 |
+
resample_sr,
|
| 283 |
+
rms_mix_rate,
|
| 284 |
+
version,
|
| 285 |
+
protect,
|
| 286 |
+
f0_file=None,
|
| 287 |
+
):
|
| 288 |
+
if (
|
| 289 |
+
file_index != ""
|
| 290 |
+
# and file_big_npy != ""
|
| 291 |
+
# and os.path.exists(file_big_npy) == True
|
| 292 |
+
and os.path.exists(file_index) == True
|
| 293 |
+
and index_rate != 0
|
| 294 |
+
):
|
| 295 |
+
try:
|
| 296 |
+
index = faiss.read_index(file_index)
|
| 297 |
+
# big_npy = np.load(file_big_npy)
|
| 298 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
| 299 |
+
except:
|
| 300 |
+
traceback.print_exc()
|
| 301 |
+
index = big_npy = None
|
| 302 |
+
else:
|
| 303 |
+
index = big_npy = None
|
| 304 |
+
audio = signal.filtfilt(bh, ah, audio)
|
| 305 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
| 306 |
+
opt_ts = []
|
| 307 |
+
if audio_pad.shape[0] > self.t_max:
|
| 308 |
+
audio_sum = np.zeros_like(audio)
|
| 309 |
+
for i in range(self.window):
|
| 310 |
+
audio_sum += audio_pad[i : i - self.window]
|
| 311 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
| 312 |
+
opt_ts.append(
|
| 313 |
+
t
|
| 314 |
+
- self.t_query
|
| 315 |
+
+ np.where(
|
| 316 |
+
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
| 317 |
+
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
| 318 |
+
)[0][0]
|
| 319 |
+
)
|
| 320 |
+
s = 0
|
| 321 |
+
audio_opt = []
|
| 322 |
+
t = None
|
| 323 |
+
t1 = ttime()
|
| 324 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
| 325 |
+
p_len = audio_pad.shape[0] // self.window
|
| 326 |
+
inp_f0 = None
|
| 327 |
+
if hasattr(f0_file, "name") == True:
|
| 328 |
+
try:
|
| 329 |
+
with open(f0_file.name, "r") as f:
|
| 330 |
+
lines = f.read().strip("\n").split("\n")
|
| 331 |
+
inp_f0 = []
|
| 332 |
+
for line in lines:
|
| 333 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
| 334 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
| 335 |
+
except:
|
| 336 |
+
traceback.print_exc()
|
| 337 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
| 338 |
+
pitch, pitchf = None, None
|
| 339 |
+
if if_f0 == 1:
|
| 340 |
+
pitch, pitchf = self.get_f0(
|
| 341 |
+
input_audio_path,
|
| 342 |
+
audio_pad,
|
| 343 |
+
p_len,
|
| 344 |
+
f0_up_key,
|
| 345 |
+
f0_method,
|
| 346 |
+
filter_radius,
|
| 347 |
+
inp_f0,
|
| 348 |
+
)
|
| 349 |
+
pitch = pitch[:p_len]
|
| 350 |
+
pitchf = pitchf[:p_len]
|
| 351 |
+
if self.device == "mps":
|
| 352 |
+
pitchf = pitchf.astype(np.float32)
|
| 353 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
| 354 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
| 355 |
+
t2 = ttime()
|
| 356 |
+
times[1] += t2 - t1
|
| 357 |
+
for t in opt_ts:
|
| 358 |
+
t = t // self.window * self.window
|
| 359 |
+
if if_f0 == 1:
|
| 360 |
+
audio_opt.append(
|
| 361 |
+
self.vc(
|
| 362 |
+
model,
|
| 363 |
+
net_g,
|
| 364 |
+
sid,
|
| 365 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 366 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 367 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 368 |
+
times,
|
| 369 |
+
index,
|
| 370 |
+
big_npy,
|
| 371 |
+
index_rate,
|
| 372 |
+
version,
|
| 373 |
+
protect,
|
| 374 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 375 |
+
)
|
| 376 |
+
else:
|
| 377 |
+
audio_opt.append(
|
| 378 |
+
self.vc(
|
| 379 |
+
model,
|
| 380 |
+
net_g,
|
| 381 |
+
sid,
|
| 382 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 383 |
+
None,
|
| 384 |
+
None,
|
| 385 |
+
times,
|
| 386 |
+
index,
|
| 387 |
+
big_npy,
|
| 388 |
+
index_rate,
|
| 389 |
+
version,
|
| 390 |
+
protect,
|
| 391 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 392 |
+
)
|
| 393 |
+
s = t
|
| 394 |
+
if if_f0 == 1:
|
| 395 |
+
audio_opt.append(
|
| 396 |
+
self.vc(
|
| 397 |
+
model,
|
| 398 |
+
net_g,
|
| 399 |
+
sid,
|
| 400 |
+
audio_pad[t:],
|
| 401 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
| 402 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
| 403 |
+
times,
|
| 404 |
+
index,
|
| 405 |
+
big_npy,
|
| 406 |
+
index_rate,
|
| 407 |
+
version,
|
| 408 |
+
protect,
|
| 409 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 410 |
+
)
|
| 411 |
+
else:
|
| 412 |
+
audio_opt.append(
|
| 413 |
+
self.vc(
|
| 414 |
+
model,
|
| 415 |
+
net_g,
|
| 416 |
+
sid,
|
| 417 |
+
audio_pad[t:],
|
| 418 |
+
None,
|
| 419 |
+
None,
|
| 420 |
+
times,
|
| 421 |
+
index,
|
| 422 |
+
big_npy,
|
| 423 |
+
index_rate,
|
| 424 |
+
version,
|
| 425 |
+
protect,
|
| 426 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 427 |
+
)
|
| 428 |
+
audio_opt = np.concatenate(audio_opt)
|
| 429 |
+
if rms_mix_rate != 1:
|
| 430 |
+
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
| 431 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
| 432 |
+
audio_opt = librosa.resample(
|
| 433 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
| 434 |
+
)
|
| 435 |
+
audio_max = np.abs(audio_opt).max() / 0.99
|
| 436 |
+
max_int16 = 32768
|
| 437 |
+
if audio_max > 1:
|
| 438 |
+
max_int16 /= audio_max
|
| 439 |
+
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
| 440 |
+
del pitch, pitchf, sid
|
| 441 |
+
if torch.cuda.is_available():
|
| 442 |
+
torch.cuda.empty_cache()
|
| 443 |
+
return audio_opt
|