Spaces:
Runtime error
Runtime error
Upload app
Browse files- app.py +44 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import LongT5ForConditionalGeneration, AutoTokenizer
|
2 |
+
import time
|
3 |
+
|
4 |
+
N = 2 # Number of previous QA pairs to use for context
|
5 |
+
MAX_NEW_TOKENS = 128 # Maximum number of tokens for each answer
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("tryolabs/long-t5-tglobal-base-blogpost-cqa")
|
8 |
+
model = LongT5ForConditionalGeneration.from_pretrained("tryolabs/long-t5-tglobal-base-blogpost-cqa")
|
9 |
+
|
10 |
+
with open("context_short.txt", "r") as f:
|
11 |
+
context = f.read()
|
12 |
+
|
13 |
+
def build_input(question, user_history=[], bot_history=[]):
|
14 |
+
model_input = f"{context} || "
|
15 |
+
previous = min(len(bot_history[1:]), N)
|
16 |
+
for i in range(previous, 0, -1):
|
17 |
+
prev_question = user_history[-i-1]
|
18 |
+
prev_answer = bot_history[-i]
|
19 |
+
model_input += f"<Q{i}> {prev_question} <A{i}> {prev_answer} "
|
20 |
+
model_input += f"<Q> {question} <A> "
|
21 |
+
return model_input
|
22 |
+
|
23 |
+
def get_model_answer(question, user_history=[], bot_history=[]):
|
24 |
+
start = time.perf_counter()
|
25 |
+
model_input = build_input(question, user_history, bot_history)
|
26 |
+
end = time.perf_counter()
|
27 |
+
print(f"Build input: {end-start}")
|
28 |
+
start = time.perf_counter()
|
29 |
+
encoded_inputs = tokenizer(model_input, max_length=3000, truncation=True, return_tensors="pt")
|
30 |
+
input_ids, attention_mask = (
|
31 |
+
encoded_inputs.input_ids,
|
32 |
+
encoded_inputs.attention_mask
|
33 |
+
)
|
34 |
+
end = time.perf_counter()
|
35 |
+
print(f"Tokenize: {end-start}")
|
36 |
+
start = time.perf_counter()
|
37 |
+
encoded_output = model.generate(input_ids=input_ids, attention_mask=attention_mask, do_sample=True, max_new_tokens=MAX_NEW_TOKENS)
|
38 |
+
answer = tokenizer.decode(encoded_output[0], skip_special_tokens=True)
|
39 |
+
end = time.perf_counter()
|
40 |
+
print(f"Generate: {end-start}")
|
41 |
+
user_history.append(question)
|
42 |
+
bot_history.append(answer)
|
43 |
+
return answer, user_history, bot_history
|
44 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|