Spaces:
Paused
Paused
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig,BitsAndBytesConfig | |
import torch | |
model_id = "truongghieu/deci-finetuned_Prj2" | |
# Check if a GPU is available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Just for GPU | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype="float16", bnb_4bit_use_double_quant=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
# Load model in this way if use GPU | |
if torch.cuda.is_available(): | |
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, quantization_config=bnb_config) | |
else: | |
model = AutoModelForCausalLM.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True) | |
generation_config = GenerationConfig( | |
penalty_alpha=0.6, | |
do_sample=True, | |
top_k=3, | |
temperature=0.5, | |
repetition_penalty=1.2, | |
max_new_tokens=50, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Define a function that takes a text input and generates a text output | |
def generate_text(text): | |
input_text = f'###Human: \"{text}\"' | |
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
output_ids = model.generate(input_ids, generation_config=generation_config) | |
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
return output_text | |
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text") | |
iface.launch() | |