Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
import random
|
8 |
+
from resnet import resnet50
|
9 |
+
|
10 |
+
def seed_torch(seed=1029):
|
11 |
+
random.seed(seed)
|
12 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
13 |
+
np.random.seed(seed)
|
14 |
+
torch.manual_seed(seed)
|
15 |
+
torch.cuda.manual_seed(seed)
|
16 |
+
torch.cuda.manual_seed_all(seed)
|
17 |
+
torch.backends.cudnn.benchmark = False
|
18 |
+
torch.backends.cudnn.deterministic = True
|
19 |
+
torch.backends.cudnn.enabled = False
|
20 |
+
|
21 |
+
seed_torch(100)
|
22 |
+
|
23 |
+
def load_model(model_path):
|
24 |
+
model = resnet50(num_classes=1)
|
25 |
+
state_dict = torch.load(model_path, map_location='cpu')
|
26 |
+
model.load_state_dict(state_dict, strict=True)
|
27 |
+
if torch.cuda.is_available():
|
28 |
+
model.cuda()
|
29 |
+
model.eval()
|
30 |
+
return model
|
31 |
+
|
32 |
+
def preprocess_image(image):
|
33 |
+
transform = transforms.Compose([
|
34 |
+
transforms.Resize((224, 224)),
|
35 |
+
transforms.ToTensor(),
|
36 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
37 |
+
])
|
38 |
+
image = transform(image).unsqueeze(0)
|
39 |
+
return image
|
40 |
+
|
41 |
+
def predict_image(model, image):
|
42 |
+
if torch.cuda.is_available():
|
43 |
+
image = image.cuda()
|
44 |
+
with torch.no_grad():
|
45 |
+
output = model(image)
|
46 |
+
# Apply sigmoid to get probability between 0 and 1
|
47 |
+
prediction = torch.sigmoid(output).item()
|
48 |
+
|
49 |
+
# Clamp prediction between 0 and 1
|
50 |
+
prediction = max(0, min(prediction, 1))
|
51 |
+
|
52 |
+
# Convert to percentages
|
53 |
+
real_prob = round(prediction * 1, 2) # Rounded to 2 decimal places
|
54 |
+
fake_prob = round(1 - real_prob, 2) # Complementary probability
|
55 |
+
|
56 |
+
return real_prob, fake_prob
|
57 |
+
|
58 |
+
|
59 |
+
# def predict_image(model, image):
|
60 |
+
# if torch.cuda.is_available():
|
61 |
+
# image = image.cuda()
|
62 |
+
# with torch.no_grad():
|
63 |
+
# output = model(image)
|
64 |
+
# prediction = torch.sigmoid(output).item()
|
65 |
+
# real_prob = gr.number(min(max(prediction * 100, 0), 100)) # Convert to integer
|
66 |
+
# fake_prob = int(100 - real_prob) # Ensure complementary probability
|
67 |
+
# return real_prob, fake_prob
|
68 |
+
|
69 |
+
# Load the model once at the start
|
70 |
+
model_path = "model_epoch_last_3090.pth" # Update with the correct path to your model
|
71 |
+
model = load_model(model_path)
|
72 |
+
|
73 |
+
def detect_deepfake(image):
|
74 |
+
image = Image.fromarray(image).convert("RGB")
|
75 |
+
preprocessed_image = preprocess_image(image)
|
76 |
+
real_prob, fake_prob = predict_image(model, preprocessed_image)
|
77 |
+
print("real_prob", real_prob)
|
78 |
+
print("fake_prob", fake_prob)
|
79 |
+
|
80 |
+
return {"Real Confidence": real_prob, "Fake Confidence": fake_prob}
|
81 |
+
|
82 |
+
|
83 |
+
iface = gr.Interface(
|
84 |
+
fn=detect_deepfake,
|
85 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
86 |
+
outputs=gr.Label(num_top_classes=2, label="Confidence Scores"),
|
87 |
+
title="Deepfake Detection",
|
88 |
+
description="Upload an image to determine its confidence scores for being real or fake."
|
89 |
+
)
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
iface.launch()
|