| import argparse | |
| import cv2 | |
| import numpy as np | |
| import os | |
| import torch | |
| import torch.nn.functional as F | |
| from torchvision.transforms import Compose | |
| from depth_anything.dpt import DepthAnything | |
| from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--video-path', type=str) | |
| parser.add_argument('--outdir', type=str, default='./vis_video_depth') | |
| parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl']) | |
| args = parser.parse_args() | |
| margin_width = 50 | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(args.encoder)).to(DEVICE).eval() | |
| total_params = sum(param.numel() for param in depth_anything.parameters()) | |
| print('Total parameters: {:.2f}M'.format(total_params / 1e6)) | |
| transform = Compose([ | |
| Resize( | |
| width=518, | |
| height=518, | |
| resize_target=False, | |
| keep_aspect_ratio=True, | |
| ensure_multiple_of=14, | |
| resize_method='lower_bound', | |
| image_interpolation_method=cv2.INTER_CUBIC, | |
| ), | |
| NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| PrepareForNet(), | |
| ]) | |
| if os.path.isfile(args.video_path): | |
| if args.video_path.endswith('txt'): | |
| with open(args.video_path, 'r') as f: | |
| lines = f.read().splitlines() | |
| else: | |
| filenames = [args.video_path] | |
| else: | |
| filenames = os.listdir(args.video_path) | |
| filenames = [os.path.join(args.video_path, filename) for filename in filenames if not filename.startswith('.')] | |
| filenames.sort() | |
| os.makedirs(args.outdir, exist_ok=True) | |
| for k, filename in enumerate(filenames): | |
| print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename) | |
| raw_video = cv2.VideoCapture(filename) | |
| frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS)) | |
| output_width = frame_width * 2 + margin_width | |
| filename = os.path.basename(filename) | |
| output_path = os.path.join(args.outdir, filename[:filename.rfind('.')] + '_video_depth.mp4') | |
| out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (output_width, frame_height)) | |
| while raw_video.isOpened(): | |
| ret, raw_frame = raw_video.read() | |
| if not ret: | |
| break | |
| frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0 | |
| frame = transform({'image': frame})['image'] | |
| frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE) | |
| with torch.no_grad(): | |
| depth = depth_anything(frame) | |
| depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0] | |
| depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
| depth = depth.cpu().numpy().astype(np.uint8) | |
| depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO) | |
| split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255 | |
| combined_frame = cv2.hconcat([raw_frame, split_region, depth_color]) | |
| out.write(combined_frame) | |
| raw_video.release() | |
| out.release() | |