|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
import os |
|
from PIL import Image |
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision.transforms import Compose |
|
|
|
from depth_anything.dpt import DepthAnything |
|
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet |
|
|
|
|
|
transform = Compose([ |
|
Resize( |
|
width=518, |
|
height=518, |
|
resize_target=False, |
|
keep_aspect_ratio=True, |
|
ensure_multiple_of=14, |
|
resize_method='lower_bound', |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
), |
|
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
PrepareForNet(), |
|
]) |
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vits14').to(DEVICE).eval() |
|
|
|
|
|
def predict_depthmap(image): |
|
original_image = image.copy() |
|
|
|
h, w = image.shape[:2] |
|
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 |
|
image = transform({'image': image})['image'] |
|
image = torch.from_numpy(image).unsqueeze(0).to(DEVICE) |
|
|
|
with torch.no_grad(): |
|
depth = model(image) |
|
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] |
|
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 |
|
depth = depth.cpu().numpy().astype(np.uint8) |
|
colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1] |
|
|
|
|
|
corlored_depth = Image.fromarray(colored_depth) |
|
|
|
return colored_depth |
|
|
|
|
|
demo = gr.Interface(fn=predict_depthmap, inputs=[gr.Image()], |
|
outputs=[gr.Image(type="pil")] |
|
) |
|
|
|
demo.launch(share=True, server_name="localhost", server_port=8082) |
|
|
|
|
|
|
|
|