init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +35 -35
- app.py +409 -0
- configs/computer/a100.yaml +8 -0
- configs/computer/cluster-node-a100.yaml +8 -0
- configs/computer/cluster-node-v100.yaml +8 -0
- configs/computer/cpu.yaml +8 -0
- configs/computer/v100.yaml +8 -0
- configs/config.yaml +89 -0
- configs/dataset/baselines/im2gps.yaml +16 -0
- configs/dataset/baselines/im2gps3k.yaml +16 -0
- configs/dataset/baselines/yfcc4k.yaml +16 -0
- configs/dataset/osv5m.yaml +46 -0
- configs/dataset/osv5m_contrastive.yaml +34 -0
- configs/dataset/osv5m_contrastive_best.yaml +37 -0
- configs/dataset/osv5m_text_contrastive.yaml +34 -0
- configs/dataset/test_transform/center_crop.yaml +12 -0
- configs/dataset/test_transform/clip.yaml +2 -0
- configs/dataset/test_transform/fast_clip.yaml +12 -0
- configs/dataset/test_transform/fast_resnet.yaml +12 -0
- configs/dataset/test_transform/none.yaml +6 -0
- configs/dataset/train_transform/augmentation.yaml +85 -0
- configs/dataset/train_transform/center_crop.yaml +14 -0
- configs/dataset/train_transform/clip.yaml +2 -0
- configs/dataset/train_transform/fast_clip.yaml +12 -0
- configs/dataset/train_transform/fast_resnet.yaml +12 -0
- configs/dataset/train_transform/none.yaml +7 -0
- configs/exp/DinoV2.yaml +18 -0
- configs/exp/ResNet.yaml +21 -0
- configs/exp/base_model.yaml +19 -0
- configs/exp/best_model.yaml +25 -0
- configs/exp/classification_area.yaml +19 -0
- configs/exp/classification_cell.yaml +19 -0
- configs/exp/classification_cell_hier.yaml +20 -0
- configs/exp/classification_city.yaml +19 -0
- configs/exp/classification_city_hier.yaml +20 -0
- configs/exp/classification_country.yaml +19 -0
- configs/exp/classification_region copy.yaml +19 -0
- configs/exp/classification_region.yaml +19 -0
- configs/exp/clip_L_14_DataComp.yaml +18 -0
- configs/exp/clip_L_14_Laion.yaml +18 -0
- configs/exp/clip_L_14_OpenAI.yaml +18 -0
- configs/exp/clip_bigG_14_Laion.yaml +18 -0
- configs/exp/contrastive_area.yaml +20 -0
- configs/exp/contrastive_cell.yaml +20 -0
- configs/exp/contrastive_city.yaml +20 -0
- configs/exp/contrastive_country.yaml +20 -0
- configs/exp/contrastive_region.yaml +20 -0
- configs/exp/contrastive_text.yaml +22 -0
- configs/exp/eval_best_model.yaml +29 -0
- configs/exp/fine_tuning.yaml +20 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
import pydeck as pdk
|
6 |
+
from geopy.geocoders import Nominatim
|
7 |
+
import time
|
8 |
+
import requests
|
9 |
+
from io import BytesIO
|
10 |
+
import reverse_geocoder as rg
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
from urllib.parse import urljoin
|
13 |
+
from models.huggingface import Geolocalizer
|
14 |
+
import spacy
|
15 |
+
from collections import Counter
|
16 |
+
from spacy.cli import download
|
17 |
+
from typing import Tuple, List, Optional, Union, Dict
|
18 |
+
|
19 |
+
|
20 |
+
def load_spacy_model(model_name: str = "en_core_web_md") -> spacy.Language:
|
21 |
+
"""
|
22 |
+
Load the specified spaCy model.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
model_name (str): Name of the spaCy model to load.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
spacy.Language: Loaded spaCy model.
|
29 |
+
"""
|
30 |
+
try:
|
31 |
+
return spacy.load(model_name)
|
32 |
+
except IOError:
|
33 |
+
print(f"Model {model_name} not found, downloading...")
|
34 |
+
download(model_name)
|
35 |
+
return spacy.load(model_name)
|
36 |
+
|
37 |
+
|
38 |
+
nlp = load_spacy_model()
|
39 |
+
|
40 |
+
IMAGE_SIZE = (224, 224)
|
41 |
+
GEOLOC_MODEL_NAME = "osv5m/baseline"
|
42 |
+
|
43 |
+
|
44 |
+
@st.cache_resource(show_spinner=True)
|
45 |
+
def load_geoloc_model() -> Optional[Geolocalizer]:
|
46 |
+
"""
|
47 |
+
Load the geolocation model.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
Optional[Geolocalizer]: Loaded geolocation model or None if loading fails.
|
51 |
+
"""
|
52 |
+
with st.spinner('Loading model...'):
|
53 |
+
try:
|
54 |
+
model = Geolocalizer.from_pretrained(GEOLOC_MODEL_NAME)
|
55 |
+
model.eval()
|
56 |
+
return model
|
57 |
+
except Exception as e:
|
58 |
+
st.error(f"Failed to load the model: {e}")
|
59 |
+
return None
|
60 |
+
|
61 |
+
|
62 |
+
def most_frequent_locations(text: str) -> Tuple[str, List[str]]:
|
63 |
+
"""
|
64 |
+
Find the most frequent locations mentioned in the text.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
text (str): Input text to analyze.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
Tuple[str, List[str]]: Description of the most mentioned locations and a list of those locations.
|
71 |
+
"""
|
72 |
+
doc = nlp(text)
|
73 |
+
locations = []
|
74 |
+
|
75 |
+
for ent in doc.ents:
|
76 |
+
if ent.label_ in ['LOC', 'GPE']:
|
77 |
+
print(f"Entity: {ent.text} | Label: {ent.label_} | Sentence: {ent.sent}")
|
78 |
+
locations.append(ent.text)
|
79 |
+
|
80 |
+
if locations:
|
81 |
+
location_counts = Counter(locations)
|
82 |
+
most_common_locations = location_counts.most_common(2)
|
83 |
+
common_locations_str = ', '.join([f"{loc[0]} ({loc[1]} occurrences)" for loc in most_common_locations])
|
84 |
+
return f"Most Mentioned Locations: {common_locations_str}", [loc[0] for loc in most_common_locations]
|
85 |
+
else:
|
86 |
+
return "No locations found", []
|
87 |
+
|
88 |
+
|
89 |
+
def transform_image(image: Image) -> torch.Tensor:
|
90 |
+
"""
|
91 |
+
Transform the input image for model prediction.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
image (Image): Input image.
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
torch.Tensor: Transformed image tensor.
|
98 |
+
"""
|
99 |
+
transform = transforms.Compose([
|
100 |
+
transforms.Resize(IMAGE_SIZE),
|
101 |
+
transforms.ToTensor(),
|
102 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
103 |
+
])
|
104 |
+
return transform(image).unsqueeze(0)
|
105 |
+
|
106 |
+
|
107 |
+
def check_location_match(location_query: dict, most_common_locations: List[str]) -> bool:
|
108 |
+
"""
|
109 |
+
Check if the predicted location matches any of the most common locations.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
location_query (dict): Predicted location details.
|
113 |
+
most_common_locations (List[str]): List of most common locations.
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
bool: True if a match is found, False otherwise.
|
117 |
+
"""
|
118 |
+
name = location_query['name']
|
119 |
+
admin1 = location_query['admin1']
|
120 |
+
cc = location_query['cc']
|
121 |
+
|
122 |
+
for loc in most_common_locations:
|
123 |
+
if name in loc and admin1 in loc and cc in loc:
|
124 |
+
return True
|
125 |
+
return False
|
126 |
+
|
127 |
+
|
128 |
+
def get_city_geojson(location_name: str) -> Optional[dict]:
|
129 |
+
"""
|
130 |
+
Fetch the GeoJSON data for the specified city.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
location_name (str): Name of the city.
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
Optional[dict]: GeoJSON data of the city or None if fetching fails.
|
137 |
+
"""
|
138 |
+
geolocator = Nominatim(user_agent="predictGeolocforImage")
|
139 |
+
try:
|
140 |
+
location = geolocator.geocode(location_name, geometry='geojson')
|
141 |
+
return location.raw['geojson'] if location else None
|
142 |
+
except Exception as e:
|
143 |
+
st.error(f"Failed to geocode location: {e}")
|
144 |
+
return None
|
145 |
+
|
146 |
+
|
147 |
+
def get_media(url: str) -> Optional[List[Tuple[str, str]]]:
|
148 |
+
"""
|
149 |
+
Fetch media URLs and associated text from the specified URL.
|
150 |
+
|
151 |
+
Args:
|
152 |
+
url (str): URL to fetch media from.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
Optional[List[Tuple[str, str]]]: List of tuples containing media URLs and associated text or None if fetching fails.
|
156 |
+
"""
|
157 |
+
try:
|
158 |
+
response = requests.get(url)
|
159 |
+
response.raise_for_status()
|
160 |
+
data = response.json()
|
161 |
+
return [(media['media_url'], entry['full_text'])
|
162 |
+
for entry in data for media in entry.get('media', []) if 'media_url' in media]
|
163 |
+
except requests.RequestException as e:
|
164 |
+
st.error(f"Failed to fetch media URL: {e}")
|
165 |
+
return None
|
166 |
+
|
167 |
+
|
168 |
+
def predict_location(image: Image, model: Geolocalizer) -> Optional[Tuple[List[float], dict, Optional[dict], float]]:
|
169 |
+
"""
|
170 |
+
Predict the location from the input image using the specified model.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
image (Image): Input image.
|
174 |
+
model (Geolocalizer): Geolocation model.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
Optional[Tuple[List[float], dict, Optional[dict], float]]: Predicted GPS coordinates, location query, city GeoJSON data, and processing time or None if prediction fails.
|
178 |
+
"""
|
179 |
+
with st.spinner('Processing image and predicting location...'):
|
180 |
+
start_time = time.time()
|
181 |
+
try:
|
182 |
+
img_tensor = transform_image(image)
|
183 |
+
gps_radians = model(img_tensor)
|
184 |
+
gps_degrees = torch.rad2deg(gps_radians).squeeze(0).cpu().tolist()
|
185 |
+
location_query = rg.search((gps_degrees[0], gps_degrees[1]))[0]
|
186 |
+
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
|
187 |
+
city_geojson = get_city_geojson(location_name)
|
188 |
+
processing_time = time.time() - start_time
|
189 |
+
return gps_degrees, location_query, city_geojson, processing_time
|
190 |
+
except Exception as e:
|
191 |
+
st.error(f"Failed to predict the location: {e}")
|
192 |
+
return None
|
193 |
+
|
194 |
+
|
195 |
+
def display_map(city_geojson: dict, gps_degrees: List[float]) -> None:
|
196 |
+
"""
|
197 |
+
Display a map with the specified city GeoJSON data and GPS coordinates.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
city_geojson (dict): GeoJSON data of the city.
|
201 |
+
gps_degrees (List[float]): GPS coordinates.
|
202 |
+
"""
|
203 |
+
map_view = pdk.Deck(
|
204 |
+
map_style='mapbox://styles/mapbox/light-v9',
|
205 |
+
initial_view_state=pdk.ViewState(
|
206 |
+
latitude=gps_degrees[0],
|
207 |
+
longitude=gps_degrees[1],
|
208 |
+
zoom=8,
|
209 |
+
pitch=0,
|
210 |
+
),
|
211 |
+
layers=[
|
212 |
+
pdk.Layer(
|
213 |
+
'GeoJsonLayer',
|
214 |
+
data=city_geojson,
|
215 |
+
get_fill_color=[255, 180, 0, 140],
|
216 |
+
pickable=True,
|
217 |
+
stroked=True,
|
218 |
+
filled=True,
|
219 |
+
extruded=False,
|
220 |
+
line_width_min_pixels=1,
|
221 |
+
),
|
222 |
+
],
|
223 |
+
)
|
224 |
+
st.pydeck_chart(map_view)
|
225 |
+
|
226 |
+
|
227 |
+
def display_image(image_url: str) -> None:
|
228 |
+
"""
|
229 |
+
Display an image from the specified URL.
|
230 |
+
|
231 |
+
Args:
|
232 |
+
image_url (str): URL of the image.
|
233 |
+
"""
|
234 |
+
try:
|
235 |
+
response = requests.get(image_url)
|
236 |
+
response.raise_for_status()
|
237 |
+
image_bytes = BytesIO(response.content)
|
238 |
+
st.image(image_bytes, caption=f'Image from URL: {image_url}', use_column_width=True)
|
239 |
+
except requests.RequestException as e:
|
240 |
+
st.error(f"Failed to fetch image at URL {image_url}: {e}")
|
241 |
+
except Exception as e:
|
242 |
+
st.error(f"An error occurred: {e}")
|
243 |
+
|
244 |
+
|
245 |
+
def scrape_webpage(url: str) -> Union[Tuple[Optional[str], Optional[List[str]]], Tuple[None, None]]:
|
246 |
+
"""
|
247 |
+
Scrape the specified webpage for text and images.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
url (str): URL of the webpage to scrape.
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
Union[Tuple[Optional[str], Optional[List[str]]], Tuple[None, None]]: Extracted text and list of image URLs or None if scraping fails.
|
254 |
+
"""
|
255 |
+
with st.spinner('Scraping web page...'):
|
256 |
+
try:
|
257 |
+
response = requests.get(url)
|
258 |
+
response.raise_for_status()
|
259 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
260 |
+
base_url = url # Adjust based on <base> tags or other HTML clues
|
261 |
+
text = ''.join(p.text for p in soup.find_all('p'))
|
262 |
+
images = [urljoin(base_url, img['src']) for img in soup.find_all('img') if 'src' in img.attrs]
|
263 |
+
return text, images
|
264 |
+
except requests.RequestException as e:
|
265 |
+
st.error(f"Failed to fetch and parse the URL: {e}")
|
266 |
+
return None, None
|
267 |
+
|
268 |
+
|
269 |
+
def main() -> None:
|
270 |
+
"""
|
271 |
+
Main function to run the Streamlit app.
|
272 |
+
"""
|
273 |
+
st.title('Welcome to Geolocation Guesstimation Demo 👋')
|
274 |
+
|
275 |
+
page = st.sidebar.selectbox(
|
276 |
+
"Choose your action:",
|
277 |
+
("Home", "Images", "Social Media", "Web Pages"),
|
278 |
+
index=0
|
279 |
+
)
|
280 |
+
|
281 |
+
st.sidebar.success("Select a demo above.")
|
282 |
+
st.sidebar.info(
|
283 |
+
"""
|
284 |
+
- Web App URL: <https://yunusserhat-guesstimatelocation.hf.space/>
|
285 |
+
"""
|
286 |
+
)
|
287 |
+
|
288 |
+
st.sidebar.title("Contact")
|
289 |
+
st.sidebar.info(
|
290 |
+
"""
|
291 |
+
Yunus Serhat Bıçakçı at [yunusserhat.com](https://yunusserhat.com) | [GitHub](https://github.com/yunusserhat) | [Twitter](https://twitter.com/yunusserhat) | [LinkedIn](https://www.linkedin.com/in/yunusserhat)
|
292 |
+
"""
|
293 |
+
)
|
294 |
+
|
295 |
+
if page == "Home":
|
296 |
+
st.write("Welcome to the Geolocation Predictor. Please select an action from the sidebar dropdown.")
|
297 |
+
|
298 |
+
elif page == "Images":
|
299 |
+
upload_images_page()
|
300 |
+
|
301 |
+
elif page == "Social Media":
|
302 |
+
social_media_page()
|
303 |
+
|
304 |
+
elif page == "Web Pages":
|
305 |
+
web_page_url_page()
|
306 |
+
|
307 |
+
|
308 |
+
def upload_images_page() -> None:
|
309 |
+
"""
|
310 |
+
Display the image upload page for geolocation prediction.
|
311 |
+
"""
|
312 |
+
st.header("Image Upload for Geolocation Prediction")
|
313 |
+
uploaded_files = st.file_uploader("Choose images...", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
314 |
+
if uploaded_files:
|
315 |
+
for idx, file in enumerate(uploaded_files, start=1):
|
316 |
+
with st.spinner(f"Processing {file.name}..."):
|
317 |
+
image = Image.open(file).convert('RGB')
|
318 |
+
st.image(image, caption=f'Uploaded Image: {file.name}', use_column_width=True)
|
319 |
+
model = load_geoloc_model()
|
320 |
+
if model:
|
321 |
+
result = predict_location(image, model)
|
322 |
+
if result:
|
323 |
+
gps_degrees, location_query, city_geojson, processing_time = result
|
324 |
+
st.write(
|
325 |
+
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
|
326 |
+
if city_geojson:
|
327 |
+
display_map(city_geojson, gps_degrees)
|
328 |
+
st.write(f"Processing Time (seconds): {processing_time}")
|
329 |
+
|
330 |
+
|
331 |
+
def social_media_page() -> None:
|
332 |
+
"""
|
333 |
+
Display the social media analysis page.
|
334 |
+
"""
|
335 |
+
st.header("Social Media Analyser")
|
336 |
+
social_media_url = st.text_input("Enter a social media URL to analyse:", key='social_media_url_input')
|
337 |
+
if social_media_url:
|
338 |
+
media_data = get_media(social_media_url)
|
339 |
+
if media_data:
|
340 |
+
full_text = media_data[0][1]
|
341 |
+
st.subheader("Full Text")
|
342 |
+
st.write(full_text)
|
343 |
+
most_used_location, most_common_locations = most_frequent_locations(full_text)
|
344 |
+
st.subheader("Most Frequent Location")
|
345 |
+
st.write(most_used_location)
|
346 |
+
|
347 |
+
for idx, (media_url, _) in enumerate(media_data, start=1):
|
348 |
+
st.subheader(f"Image {idx}")
|
349 |
+
response = requests.get(media_url)
|
350 |
+
if response.status_code == 200:
|
351 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
352 |
+
st.image(image, caption=f'Image from URL: {media_url}', use_column_width=True)
|
353 |
+
model = load_geoloc_model()
|
354 |
+
if model:
|
355 |
+
result = predict_location(image, model)
|
356 |
+
if result:
|
357 |
+
gps_degrees, location_query, city_geojson, processing_time = result
|
358 |
+
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
|
359 |
+
st.write(
|
360 |
+
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
|
361 |
+
if city_geojson:
|
362 |
+
display_map(city_geojson, gps_degrees)
|
363 |
+
st.write(f"Processing Time (seconds): {processing_time}")
|
364 |
+
if check_location_match(location_query, most_common_locations):
|
365 |
+
st.success(
|
366 |
+
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
|
367 |
+
else:
|
368 |
+
st.error(f"Failed to fetch image at URL {media_url}: HTTP {response.status_code}")
|
369 |
+
|
370 |
+
|
371 |
+
def web_page_url_page() -> None:
|
372 |
+
"""
|
373 |
+
Display the web page URL analysis page.
|
374 |
+
"""
|
375 |
+
st.header("Web Page Analyser")
|
376 |
+
web_page_url = st.text_input("Enter a web page URL to scrape:", key='web_page_url_input')
|
377 |
+
if web_page_url:
|
378 |
+
text, images = scrape_webpage(web_page_url)
|
379 |
+
if text:
|
380 |
+
st.subheader("Extracted Text First 500 Characters:")
|
381 |
+
st.write(text[:500])
|
382 |
+
most_used_location, most_common_locations = most_frequent_locations(text)
|
383 |
+
st.subheader("Most Frequent Location")
|
384 |
+
st.write(most_used_location)
|
385 |
+
if images:
|
386 |
+
selected_image_url = st.selectbox("Select an image to predict location:", images)
|
387 |
+
if selected_image_url:
|
388 |
+
response = requests.get(selected_image_url)
|
389 |
+
if response.status_code == 200:
|
390 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
391 |
+
st.image(image, caption=f'Selected Image from URL: {selected_image_url}', use_column_width=True)
|
392 |
+
model = load_geoloc_model()
|
393 |
+
if model:
|
394 |
+
result = predict_location(image, model)
|
395 |
+
if result:
|
396 |
+
gps_degrees, location_query, city_geojson, processing_time = result
|
397 |
+
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
|
398 |
+
st.write(
|
399 |
+
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
|
400 |
+
if city_geojson:
|
401 |
+
display_map(city_geojson, gps_degrees)
|
402 |
+
st.write(f"Processing Time (seconds): {processing_time}")
|
403 |
+
if check_location_match(location_query, most_common_locations):
|
404 |
+
st.success(
|
405 |
+
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
|
406 |
+
|
407 |
+
|
408 |
+
if __name__ == '__main__':
|
409 |
+
main()
|
configs/computer/a100.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices: 1
|
2 |
+
progress_bar_refresh_rate: 2
|
3 |
+
num_workers: 8
|
4 |
+
sync_batchnorm: False
|
5 |
+
accelerator: gpu
|
6 |
+
precision: 32
|
7 |
+
strategy: auto
|
8 |
+
num_nodes: 1
|
configs/computer/cluster-node-a100.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices: 8
|
2 |
+
num_workers: 8
|
3 |
+
progress_bar_refresh_rate: 2
|
4 |
+
sync_batchnorm: True
|
5 |
+
accelerator: gpu
|
6 |
+
precision: 32
|
7 |
+
strategy: ddp
|
8 |
+
num_nodes: 1
|
configs/computer/cluster-node-v100.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices: 4
|
2 |
+
num_workers: 10
|
3 |
+
progress_bar_refresh_rate: 2
|
4 |
+
sync_batchnorm: True
|
5 |
+
accelerator: gpu
|
6 |
+
precision: 32
|
7 |
+
strategy: ddp
|
8 |
+
num_nodes: 1
|
configs/computer/cpu.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices: null
|
2 |
+
num_workers: 0
|
3 |
+
progress_bar_refresh_rate: 2
|
4 |
+
sync_batchnorm: False
|
5 |
+
accelerator: cpu
|
6 |
+
precision: 32
|
7 |
+
strategy: auto
|
8 |
+
num_nodes: null
|
configs/computer/v100.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices: 1
|
2 |
+
num_workers: 10
|
3 |
+
progress_bar_refresh_rate: 2
|
4 |
+
sync_batchnorm: False
|
5 |
+
accelerator: gpu
|
6 |
+
precision: 32
|
7 |
+
strategy: auto
|
8 |
+
num_nodes: 1
|
configs/config.yaml
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- model: default
|
3 |
+
- computer: v100
|
4 |
+
- dataset: osv5m
|
5 |
+
- _self_
|
6 |
+
- exp: ???
|
7 |
+
|
8 |
+
model:
|
9 |
+
val_metrics:
|
10 |
+
_target_: metrics.distance_based.HaversineMetrics
|
11 |
+
acc_radiuses:
|
12 |
+
- 1
|
13 |
+
- 25
|
14 |
+
- 200
|
15 |
+
- 750
|
16 |
+
- 2500
|
17 |
+
acc_area: []
|
18 |
+
aux_data: ${aux_data}
|
19 |
+
test_metrics:
|
20 |
+
_target_: metrics.distance_based.HaversineMetrics
|
21 |
+
acc_radiuses:
|
22 |
+
- 1
|
23 |
+
- 25
|
24 |
+
- 200
|
25 |
+
- 750
|
26 |
+
- 2500
|
27 |
+
acc_area: ${areas}
|
28 |
+
aux_data: ${aux_data}
|
29 |
+
|
30 |
+
datamodule:
|
31 |
+
_target_: data.datamodule.ImageDataModule
|
32 |
+
train_dataset: ${dataset.train_dataset}
|
33 |
+
val_dataset: ${dataset.val_dataset}
|
34 |
+
test_dataset: ${dataset.test_dataset}
|
35 |
+
global_batch_size: ${dataset.global_batch_size}
|
36 |
+
num_workers: ${computer.num_workers}
|
37 |
+
num_nodes: ${computer.num_nodes}
|
38 |
+
num_devices: ${computer.devices}
|
39 |
+
val_proportion: 0.1
|
40 |
+
|
41 |
+
trainer:
|
42 |
+
_target_: pytorch_lightning.Trainer
|
43 |
+
devices: ${computer.devices}
|
44 |
+
accelerator: ${computer.accelerator}
|
45 |
+
strategy: ${computer.strategy}
|
46 |
+
num_nodes: ${computer.num_nodes}
|
47 |
+
precision: ${computer.precision}
|
48 |
+
max_epochs: ${max_epochs}
|
49 |
+
|
50 |
+
logger:
|
51 |
+
_target_: pytorch_lightning.loggers.WandbLogger
|
52 |
+
save_dir: ${root_dir}
|
53 |
+
name: ${experiment_name}
|
54 |
+
project: plonk
|
55 |
+
log_model: False
|
56 |
+
offline: False
|
57 |
+
entity: imaginelab
|
58 |
+
|
59 |
+
checkpoints:
|
60 |
+
_target_: pytorch_lightning.callbacks.ModelCheckpoint
|
61 |
+
dirpath: ${root_dir}/checkpoints/${experiment_name}
|
62 |
+
filename: 'epoch_{epoch}'
|
63 |
+
monitor: val/loss
|
64 |
+
save_last: True
|
65 |
+
save_top_k: 0
|
66 |
+
every_n_epochs: 1
|
67 |
+
|
68 |
+
progress_bar:
|
69 |
+
_target_: pytorch_lightning.callbacks.TQDMProgressBar
|
70 |
+
refresh_rate: ${computer.progress_bar_refresh_rate}
|
71 |
+
|
72 |
+
aux_data: []
|
73 |
+
max_epochs: 100
|
74 |
+
data_dir: ${root_dir}/datasets
|
75 |
+
root_dir: ${hydra:runtime.cwd}
|
76 |
+
experiment_name: ${dataset.name}__${model.name}
|
77 |
+
mode: train # change that to eval to do the testing
|
78 |
+
num_classes: 0
|
79 |
+
areas: ['country', 'region', 'sub-region', 'city']
|
80 |
+
class_name: null
|
81 |
+
streetclip: False
|
82 |
+
blur: False
|
83 |
+
text_tuning: False
|
84 |
+
|
85 |
+
hydra:
|
86 |
+
run:
|
87 |
+
dir: outputs/${hydra.job.name}/${now:%Y-%m-%d_%H-%M-%S}/${experiment_name}
|
88 |
+
job:
|
89 |
+
chdir: true
|
configs/dataset/baselines/im2gps.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset:
|
2 |
+
name: im2gps
|
3 |
+
global_batch_size: 512
|
4 |
+
test_dataset:
|
5 |
+
_partial_: true
|
6 |
+
_target_: data.data.Baseline
|
7 |
+
path: ${data_dir}/baselines/im2gps
|
8 |
+
which: 'im2gps'
|
9 |
+
transforms: ${dataset.test_transform}
|
10 |
+
datamodule:
|
11 |
+
_target_: data.datamodule.BaselineDataModule
|
12 |
+
test_dataset: ${dataset.test_dataset}
|
13 |
+
global_batch_size: ${dataset.global_batch_size}
|
14 |
+
num_workers: ${computer.num_workers}
|
15 |
+
num_nodes: ${computer.num_nodes}
|
16 |
+
num_devices: ${computer.devices}
|
configs/dataset/baselines/im2gps3k.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset:
|
2 |
+
name: im2gps3k
|
3 |
+
global_batch_size: 512
|
4 |
+
test_dataset:
|
5 |
+
_partial_: true
|
6 |
+
_target_: data.data.Baseline
|
7 |
+
path: ${data_dir}/baselines/im2gps3k
|
8 |
+
which: 'im2gps3k'
|
9 |
+
transforms: ${dataset.test_transform}
|
10 |
+
datamodule:
|
11 |
+
_target_: data.datamodule.BaselineDataModule
|
12 |
+
test_dataset: ${dataset.test_dataset}
|
13 |
+
global_batch_size: ${dataset.global_batch_size}
|
14 |
+
num_workers: ${computer.num_workers}
|
15 |
+
num_nodes: ${computer.num_nodes}
|
16 |
+
num_devices: ${computer.devices}
|
configs/dataset/baselines/yfcc4k.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset:
|
2 |
+
name: yfcc4k
|
3 |
+
global_batch_size: 512
|
4 |
+
test_dataset:
|
5 |
+
_partial_: true
|
6 |
+
_target_: data.data.Baseline
|
7 |
+
path: ${data_dir}/baselines/yfcc4k
|
8 |
+
which: 'yfcc4k'
|
9 |
+
transforms: ${dataset.test_transform}
|
10 |
+
datamodule:
|
11 |
+
_target_: data.datamodule.BaselineDataModule
|
12 |
+
test_dataset: ${dataset.test_dataset}
|
13 |
+
global_batch_size: ${dataset.global_batch_size}
|
14 |
+
num_workers: ${computer.num_workers}
|
15 |
+
num_nodes: ${computer.num_nodes}
|
16 |
+
num_devices: ${computer.devices}
|
configs/dataset/osv5m.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- train_transform: fast_clip
|
3 |
+
- test_transform: fast_clip
|
4 |
+
- _self_
|
5 |
+
|
6 |
+
name: osv5m
|
7 |
+
global_batch_size: 256
|
8 |
+
|
9 |
+
train_dataset:
|
10 |
+
_partial_: true
|
11 |
+
_target_: data.data.osv5m
|
12 |
+
path: ${data_dir}/osv5m/
|
13 |
+
split: train
|
14 |
+
class_name: ${class_name}
|
15 |
+
transforms: ${dataset.train_transform}
|
16 |
+
aux_data: ${aux_data}
|
17 |
+
is_baseline: ${is_baseline}
|
18 |
+
areas: ${areas}
|
19 |
+
streetclip: ${streetclip}
|
20 |
+
blur: ${blur}
|
21 |
+
|
22 |
+
val_dataset:
|
23 |
+
_partial_: true
|
24 |
+
_target_: data.data.osv5m
|
25 |
+
path: ${data_dir}/osv5m/
|
26 |
+
split: val
|
27 |
+
class_name: ${class_name}
|
28 |
+
transforms: ${dataset.test_transform}
|
29 |
+
aux_data: ${aux_data}
|
30 |
+
is_baseline: ${is_baseline}
|
31 |
+
areas: ${areas}
|
32 |
+
streetclip: ${streetclip}
|
33 |
+
blur: ${blur}
|
34 |
+
|
35 |
+
test_dataset:
|
36 |
+
_partial_: true
|
37 |
+
_target_: data.data.osv5m
|
38 |
+
path: ${data_dir}/osv5m/
|
39 |
+
split: test
|
40 |
+
class_name: ${class_name}
|
41 |
+
transforms: ${dataset.test_transform}
|
42 |
+
aux_data: ${aux_data}
|
43 |
+
is_baseline: ${is_baseline}
|
44 |
+
areas: ${areas}
|
45 |
+
streetclip: ${streetclip}
|
46 |
+
blur: ${blur}
|
configs/dataset/osv5m_contrastive.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- train_transform: fast_clip
|
3 |
+
- test_transform: fast_clip
|
4 |
+
- _self_
|
5 |
+
|
6 |
+
name: osv5m
|
7 |
+
global_batch_size: 256
|
8 |
+
|
9 |
+
train_dataset:
|
10 |
+
_partial_: true
|
11 |
+
_target_: data.data.Contrastiveosv5m
|
12 |
+
path: ${data_dir}/osv5m/
|
13 |
+
split: train
|
14 |
+
class_name: ${class_name}
|
15 |
+
transforms: ${dataset.train_transform}
|
16 |
+
blur: ${blur}
|
17 |
+
|
18 |
+
val_dataset:
|
19 |
+
_partial_: true
|
20 |
+
_target_: data.data.Contrastiveosv5m
|
21 |
+
path: ${data_dir}/osv5m/
|
22 |
+
split: val
|
23 |
+
class_name: ${class_name}
|
24 |
+
transforms: ${dataset.test_transform}
|
25 |
+
blur: ${blur}
|
26 |
+
|
27 |
+
test_dataset:
|
28 |
+
_partial_: true
|
29 |
+
_target_: data.data.Contrastiveosv5m
|
30 |
+
path: ${data_dir}/osv5m/
|
31 |
+
split: test
|
32 |
+
class_name: ${class_name}
|
33 |
+
transforms: ${dataset.test_transform}
|
34 |
+
blur: ${blur}
|
configs/dataset/osv5m_contrastive_best.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- train_transform: fast_clip
|
3 |
+
- test_transform: fast_clip
|
4 |
+
- _self_
|
5 |
+
|
6 |
+
name: osv5m
|
7 |
+
global_batch_size: 256
|
8 |
+
|
9 |
+
train_dataset:
|
10 |
+
_partial_: true
|
11 |
+
_target_: data.data.Contrastiveosv5m
|
12 |
+
path: ${data_dir}/osv5m/
|
13 |
+
split: train
|
14 |
+
class_name: ${class_name}
|
15 |
+
transforms: ${dataset.train_transform}
|
16 |
+
class_name2: 'unique_region'
|
17 |
+
blur: ${blur}
|
18 |
+
|
19 |
+
val_dataset:
|
20 |
+
_partial_: true
|
21 |
+
_target_: data.data.Contrastiveosv5m
|
22 |
+
path: ${data_dir}/osv5m/
|
23 |
+
split: val
|
24 |
+
class_name: ${class_name}
|
25 |
+
transforms: ${dataset.test_transform}
|
26 |
+
class_name2: 'unique_region'
|
27 |
+
blur: ${blur}
|
28 |
+
|
29 |
+
test_dataset:
|
30 |
+
_partial_: true
|
31 |
+
_target_: data.data.Contrastiveosv5m
|
32 |
+
path: ${data_dir}/osv5m/
|
33 |
+
split: test
|
34 |
+
class_name: ${class_name}
|
35 |
+
transforms: ${dataset.test_transform}
|
36 |
+
class_name2: 'unique_region'
|
37 |
+
blur: ${blur}
|
configs/dataset/osv5m_text_contrastive.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- train_transform: fast_clip
|
3 |
+
- test_transform: fast_clip
|
4 |
+
- _self_
|
5 |
+
|
6 |
+
name: osv5m
|
7 |
+
global_batch_size: 256
|
8 |
+
|
9 |
+
train_dataset:
|
10 |
+
_partial_: true
|
11 |
+
_target_: data.data.TextContrastiveosv5m
|
12 |
+
path: ${data_dir}/osv5m/
|
13 |
+
split: train
|
14 |
+
class_name: ${class_name}
|
15 |
+
transforms: ${dataset.train_transform}
|
16 |
+
blur: ${blur}
|
17 |
+
|
18 |
+
val_dataset:
|
19 |
+
_partial_: true
|
20 |
+
_target_: data.data.TextContrastiveosv5m
|
21 |
+
path: ${data_dir}/osv5m/
|
22 |
+
split: val
|
23 |
+
class_name: ${class_name}
|
24 |
+
transforms: ${dataset.test_transform}
|
25 |
+
blur: ${blur}
|
26 |
+
|
27 |
+
test_dataset:
|
28 |
+
_partial_: true
|
29 |
+
_target_: data.data.TextContrastiveosv5m
|
30 |
+
path: ${data_dir}/osv5m/
|
31 |
+
split: test
|
32 |
+
class_name: ${class_name}
|
33 |
+
transforms: ${dataset.test_transform}
|
34 |
+
blur: ${blur}
|
configs/dataset/test_transform/center_crop.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.ToTensor
|
4 |
+
- _target_: utils.image_processing.CenterCrop
|
5 |
+
ratio: "1:1"
|
6 |
+
- _target_: torchvision.transforms.Resize
|
7 |
+
size: ${dataset.img_resolution}
|
8 |
+
interpolation: 3
|
9 |
+
antialias: true
|
10 |
+
- _target_: torchvision.transforms.Normalize
|
11 |
+
mean: 0.5
|
12 |
+
std: 0.5
|
configs/dataset/test_transform/clip.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
_target_: data.transforms.ClipTransform
|
2 |
+
split: val
|
configs/dataset/test_transform/fast_clip.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.Resize
|
4 |
+
size: 224
|
5 |
+
interpolation: 3
|
6 |
+
antialias: true
|
7 |
+
- _target_: torchvision.transforms.CenterCrop
|
8 |
+
size: 224
|
9 |
+
- _target_: torchvision.transforms.ToTensor
|
10 |
+
- _target_: torchvision.transforms.Normalize
|
11 |
+
mean: [0.48145466, 0.4578275, 0.40821073]
|
12 |
+
std: [0.26862954, 0.26130258, 0.27577711]
|
configs/dataset/test_transform/fast_resnet.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.Resize
|
4 |
+
size: 224
|
5 |
+
interpolation: 3
|
6 |
+
antialias: true
|
7 |
+
- _target_: torchvision.transforms.CenterCrop
|
8 |
+
size: 224
|
9 |
+
- _target_: torchvision.transforms.ToTensor
|
10 |
+
- _target_: torchvision.transforms.Normalize
|
11 |
+
mean: [0.485 ,0.456 ,0.406]
|
12 |
+
std: [0.229, 0.224, 0.225]
|
configs/dataset/test_transform/none.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.ToTensor
|
4 |
+
- _target_: torchvision.transforms.Normalize
|
5 |
+
mean: 0.5
|
6 |
+
std: 0.5
|
configs/dataset/train_transform/augmentation.yaml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: data.augmentation.ImageAugmentation
|
2 |
+
names: "standard_augmentation,geometric_augmentation,clip_transform"
|
3 |
+
|
4 |
+
# always apply clip_transform at the end
|
5 |
+
clip_transform:
|
6 |
+
_target_: torchvision.transforms.Compose
|
7 |
+
transforms:
|
8 |
+
- _target_: torchvision.transforms.Resize
|
9 |
+
size: 224
|
10 |
+
interpolation: 3
|
11 |
+
antialias: true
|
12 |
+
- _target_: torchvision.transforms.CenterCrop
|
13 |
+
size: 224
|
14 |
+
- _target_: torchvision.transforms.ToTensor
|
15 |
+
- _target_: torchvision.transforms.Normalize
|
16 |
+
mean: [0.48145466, 0.4578275, 0.40821073]
|
17 |
+
std: [0.26862954, 0.26130258, 0.27577711]
|
18 |
+
|
19 |
+
standard_augmentation:
|
20 |
+
_target_: data.augmentation.StandardAugmentation
|
21 |
+
# by default, we all augmentation methods
|
22 |
+
names: "brightness,contrast,sharpness,color,blur,gaussian_noise"
|
23 |
+
|
24 |
+
# random PIL brigtness
|
25 |
+
brightness:
|
26 |
+
_target_: data.augmentation.PillowBrightness
|
27 |
+
p: 0.2
|
28 |
+
factor_interval: [0.5, 1.5]
|
29 |
+
|
30 |
+
# random PIL contrast
|
31 |
+
contrast:
|
32 |
+
_target_: data.augmentation.PillowContrast
|
33 |
+
p: 0.2
|
34 |
+
factor_interval: [0.3, 3]
|
35 |
+
|
36 |
+
# random PIL sharpness
|
37 |
+
sharpness:
|
38 |
+
_target_: data.augmentation.PillowSharpness
|
39 |
+
p: 0.2
|
40 |
+
factor_interval: [0.5, 30.0]
|
41 |
+
|
42 |
+
# random PIL color
|
43 |
+
color:
|
44 |
+
_target_: data.augmentation.PillowColor
|
45 |
+
p: 0.2
|
46 |
+
factor_interval: [0.0, 2.0]
|
47 |
+
|
48 |
+
# random PIL blur
|
49 |
+
blur:
|
50 |
+
_target_: data.augmentation.PillowBlur
|
51 |
+
p: 0.2
|
52 |
+
factor_interval: [1, 2]
|
53 |
+
|
54 |
+
# random numpy gaussian noise
|
55 |
+
gaussian_noise:
|
56 |
+
_target_: data.augmentation.NumpyGaussianNoise
|
57 |
+
p: 0.2
|
58 |
+
factor_interval: [0.1, 0.04]
|
59 |
+
|
60 |
+
geometric_augmentation:
|
61 |
+
_target_: data.augmentation.GeometricAugmentation
|
62 |
+
# by default, we all augmentation methods
|
63 |
+
names: "random_rotation,random_resized_crop,random_horizontal_flip"
|
64 |
+
|
65 |
+
# random rotation
|
66 |
+
random_rotation:
|
67 |
+
_target_: torchvision.transforms.RandomRotation
|
68 |
+
degrees: [-15, 15]
|
69 |
+
|
70 |
+
# random crop
|
71 |
+
random_resized_crop:
|
72 |
+
_target_: torchvision.transforms.RandomResizedCrop
|
73 |
+
scale: [0.5, 1.0]
|
74 |
+
ratio: [0.9, 1.1]
|
75 |
+
size: 224
|
76 |
+
|
77 |
+
# random horizontal flip
|
78 |
+
random_horizontal_flip:
|
79 |
+
_target_: torchvision.transforms.RandomHorizontalFlip
|
80 |
+
p: 0.5
|
81 |
+
|
82 |
+
# random vertical flip
|
83 |
+
random_vertical_flip:
|
84 |
+
_target_: torchvision.transforms.RandomVerticalFlip
|
85 |
+
p: 0.5
|
configs/dataset/train_transform/center_crop.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.ToTensor
|
4 |
+
- _target_: utils.image_processing.CenterCrop
|
5 |
+
ratio: "1:1"
|
6 |
+
- _target_: torchvision.transforms.Resize
|
7 |
+
size: ${dataset.img_resolution}
|
8 |
+
interpolation: 3
|
9 |
+
antialias: true
|
10 |
+
- _target_: torchvision.transforms.RandomHorizontalFlip
|
11 |
+
p: 0.5
|
12 |
+
- _target_: torchvision.transforms.Normalize
|
13 |
+
mean: 0.5
|
14 |
+
std: 0.5
|
configs/dataset/train_transform/clip.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
_target_: data.transforms.ClipTransform
|
2 |
+
split: val
|
configs/dataset/train_transform/fast_clip.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.Resize
|
4 |
+
size: 224
|
5 |
+
interpolation: 3
|
6 |
+
antialias: true
|
7 |
+
- _target_: torchvision.transforms.CenterCrop
|
8 |
+
size: 224
|
9 |
+
- _target_: torchvision.transforms.ToTensor
|
10 |
+
- _target_: torchvision.transforms.Normalize
|
11 |
+
mean: [0.48145466, 0.4578275, 0.40821073]
|
12 |
+
std: [0.26862954, 0.26130258, 0.27577711]
|
configs/dataset/train_transform/fast_resnet.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.Resize
|
4 |
+
size: 224
|
5 |
+
interpolation: 3
|
6 |
+
antialias: true
|
7 |
+
- _target_: torchvision.transforms.CenterCrop
|
8 |
+
size: 224
|
9 |
+
- _target_: torchvision.transforms.ToTensor
|
10 |
+
- _target_: torchvision.transforms.Normalize
|
11 |
+
mean: [0.485 ,0.456 ,0.406]
|
12 |
+
std: [0.229, 0.224, 0.225]
|
configs/dataset/train_transform/none.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: torchvision.transforms.Compose
|
2 |
+
transforms:
|
3 |
+
- _target_: torchvision.transforms.Resize
|
4 |
+
size: 224
|
5 |
+
interpolation: 3
|
6 |
+
antialias: true
|
7 |
+
- _target_: torchvision.transforms.ToTensor
|
configs/exp/DinoV2.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: regression
|
5 |
+
- override /model/network/backbone: dinov2_vitl14
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
model:
|
9 |
+
optimizer:
|
10 |
+
optim:
|
11 |
+
lr: 0.0002
|
12 |
+
weight_decay: 0.0001
|
13 |
+
|
14 |
+
is_baseline: false
|
15 |
+
max_epochs: 30
|
16 |
+
|
17 |
+
dataset:
|
18 |
+
global_batch_size: 2048
|
configs/exp/ResNet.yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: regression
|
5 |
+
- override /dataset/test_transform: fast_resnet
|
6 |
+
- override /dataset/train_transform: fast_resnet
|
7 |
+
- override /model.network.mid: mlp_resnet
|
8 |
+
- override /model/network/backbone: ResNet50
|
9 |
+
- _self_
|
10 |
+
|
11 |
+
model:
|
12 |
+
optimizer:
|
13 |
+
optim:
|
14 |
+
lr: 0.0002
|
15 |
+
weight_decay: 0.0001
|
16 |
+
|
17 |
+
is_baseline: false
|
18 |
+
max_epochs: 30
|
19 |
+
|
20 |
+
dataset:
|
21 |
+
global_batch_size: 2048
|
configs/exp/base_model.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: regression
|
5 |
+
- override /model/network/backbone: openclip_B_32
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
model:
|
9 |
+
name: base_model
|
10 |
+
optimizer:
|
11 |
+
optim:
|
12 |
+
lr: 0.0002
|
13 |
+
weight_decay: 0.0001
|
14 |
+
|
15 |
+
is_baseline: false
|
16 |
+
max_epochs: 30
|
17 |
+
|
18 |
+
dataset:
|
19 |
+
global_batch_size: 2048
|
configs/exp/best_model.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: osv5m_contrastive_best
|
5 |
+
- override /model: hybrid
|
6 |
+
- override /model/network: best_backbone
|
7 |
+
- override /model/network/backbone: clip_L_14_DataComp
|
8 |
+
- override /model/network/mid: mlp_hybrid
|
9 |
+
- override /model/loss: best_model
|
10 |
+
- _self_
|
11 |
+
|
12 |
+
class_name: 'quadtree_10_1000'
|
13 |
+
is_baseline: false
|
14 |
+
max_epochs: 30
|
15 |
+
|
16 |
+
model:
|
17 |
+
name: best_model
|
18 |
+
optimizer:
|
19 |
+
optim:
|
20 |
+
lr: 2e-4
|
21 |
+
weight_decay: 0.0001
|
22 |
+
backbone_lr: 2e-5
|
23 |
+
|
24 |
+
dataset:
|
25 |
+
global_batch_size: 2048
|
configs/exp/classification_area.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: classification
|
5 |
+
- override /model/network/backbone: openclip_B_32
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
class_name: 'area'
|
9 |
+
model:
|
10 |
+
optimizer:
|
11 |
+
optim:
|
12 |
+
lr: 0.0002
|
13 |
+
weight_decay: 0.0001
|
14 |
+
|
15 |
+
is_baseline: false
|
16 |
+
max_epochs: 15
|
17 |
+
|
18 |
+
dataset:
|
19 |
+
global_batch_size: 2048
|
configs/exp/classification_cell.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: classification
|
5 |
+
- override /model/network/backbone: openclip_B_32
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
class_name: quadtree_10_1000
|
9 |
+
model:
|
10 |
+
optimizer:
|
11 |
+
optim:
|
12 |
+
lr: 0.0002
|
13 |
+
weight_decay: 0.0001
|
14 |
+
|
15 |
+
is_baseline: false
|
16 |
+
max_epochs: 15
|
17 |
+
|
18 |
+
dataset:
|
19 |
+
global_batch_size: 2048
|
configs/exp/classification_cell_hier.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: classification
|
5 |
+
- override /model/network/backbone: openclip_B_32
|
6 |
+
- override /model/loss: cls_hier_quad
|
7 |
+
- _self_
|
8 |
+
|
9 |
+
class_name: quadtree_10_1000
|
10 |
+
model:
|
11 |
+
optimizer:
|
12 |
+
optim:
|
13 |
+
lr: 0.0002
|
14 |
+
weight_decay: 0.0001
|
15 |
+
|
16 |
+
is_baseline: false
|
17 |
+
max_epochs: 15
|
18 |
+
|
19 |
+
dataset:
|
20 |
+
global_batch_size: 2048
|
configs/exp/classification_city.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: classification
|
5 |
+
- override /model/network/backbone: openclip_B_32
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
class_name: 'city'
|
9 |
+
model:
|
10 |
+
optimizer:
|
11 |
+
optim:
|
12 |
+
lr: 0.0002
|
13 |
+
weight_decay: 0.0001
|
14 |
+
|
15 |
+
is_baseline: false
|
16 |
+
max_epochs: 15
|
17 |
+
|
18 |
+
dataset:
|
19 |
+
global_batch_size: 2048
|
configs/exp/classification_city_hier.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: classification
|
5 |
+
- override /model/network/backbone: openclip_B_32
|
6 |
+
- override /model/loss: cls_hier
|
7 |
+
- _self_
|
8 |
+
|
9 |
+
class_name: 'city'
|
10 |
+
model:
|
11 |
+
optimizer:
|
12 |
+
optim:
|
13 |
+
lr: 0.0002
|
14 |
+
weight_decay: 0.0001
|
15 |
+
|
16 |
+
is_baseline: false
|
17 |
+
max_epochs: 15
|
18 |
+
|
19 |
+
dataset:
|
20 |
+
global_batch_size: 2048
|
configs/exp/classification_country.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: classification
|
5 |
+
- override /model/network/backbone: openclip_B_32
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
class_name: 'country'
|
9 |
+
model:
|
10 |
+
optimizer:
|
11 |
+
optim:
|
12 |
+
lr: 0.0002
|
13 |
+
weight_decay: 0.0001
|
14 |
+
|
15 |
+
is_baseline: false
|
16 |
+
max_epochs: 15
|
17 |
+
|
18 |
+
dataset:
|
19 |
+
global_batch_size: 2048
|
configs/exp/classification_region copy.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: classification
|
5 |
+
- override /model/network/backbone: openclip_B_32
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
class_name: 'region'
|
9 |
+
model:
|
10 |
+
optimizer:
|
11 |
+
optim:
|
12 |
+
lr: 0.0002
|
13 |
+
weight_decay: 0.0001
|
14 |
+
|
15 |
+
is_baseline: false
|
16 |
+
max_epochs: 15
|
17 |
+
|
18 |
+
dataset:
|
19 |
+
global_batch_size: 2048
|
configs/exp/classification_region.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: classification
|
5 |
+
- override /model/network/backbone: openclip_B_32
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
class_name: 'region'
|
9 |
+
model:
|
10 |
+
optimizer:
|
11 |
+
optim:
|
12 |
+
lr: 0.0002
|
13 |
+
weight_decay: 0.0001
|
14 |
+
|
15 |
+
is_baseline: false
|
16 |
+
max_epochs: 15
|
17 |
+
|
18 |
+
dataset:
|
19 |
+
global_batch_size: 2048
|
configs/exp/clip_L_14_DataComp.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: regression
|
5 |
+
- override /model/network/backbone: clip_L_14_DataComp
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
model:
|
9 |
+
optimizer:
|
10 |
+
optim:
|
11 |
+
lr: 0.0002
|
12 |
+
weight_decay: 0.0001
|
13 |
+
|
14 |
+
is_baseline: false
|
15 |
+
max_epochs: 30
|
16 |
+
|
17 |
+
dataset:
|
18 |
+
global_batch_size: 2048
|
configs/exp/clip_L_14_Laion.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: regression
|
5 |
+
- override /model/network/backbone: openclip_L_14
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
model:
|
9 |
+
optimizer:
|
10 |
+
optim:
|
11 |
+
lr: 0.0002
|
12 |
+
weight_decay: 0.0001
|
13 |
+
|
14 |
+
is_baseline: false
|
15 |
+
max_epochs: 30
|
16 |
+
|
17 |
+
dataset:
|
18 |
+
global_batch_size: 2048
|
configs/exp/clip_L_14_OpenAI.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: regression
|
5 |
+
- override /model/network/backbone: clip_L_14
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
model:
|
9 |
+
optimizer:
|
10 |
+
optim:
|
11 |
+
lr: 0.0002
|
12 |
+
weight_decay: 0.0001
|
13 |
+
|
14 |
+
is_baseline: false
|
15 |
+
max_epochs: 30
|
16 |
+
|
17 |
+
dataset:
|
18 |
+
global_batch_size: 2048
|
configs/exp/clip_bigG_14_Laion.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: regression
|
5 |
+
- override /model/network/backbone: openclip_bigG_14
|
6 |
+
- _self_
|
7 |
+
|
8 |
+
model:
|
9 |
+
optimizer:
|
10 |
+
optim:
|
11 |
+
lr: 0.0002
|
12 |
+
weight_decay: 0.0001
|
13 |
+
|
14 |
+
is_baseline: false
|
15 |
+
max_epochs: 30
|
16 |
+
|
17 |
+
dataset:
|
18 |
+
global_batch_size: 2048
|
configs/exp/contrastive_area.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: osv5m_contrastive
|
5 |
+
- override /model: regression
|
6 |
+
- override /model/network: contrastive_unfrozen_backbone
|
7 |
+
- override /model/network/backbone: openclip_B_32
|
8 |
+
- override /model/loss: contrastive
|
9 |
+
- _self_
|
10 |
+
|
11 |
+
model:
|
12 |
+
optimizer:
|
13 |
+
optim:
|
14 |
+
lr: 2e-4
|
15 |
+
weight_decay: 0.0001
|
16 |
+
backbone_lr: 2e-5
|
17 |
+
|
18 |
+
class_name: area
|
19 |
+
is_baseline: false
|
20 |
+
max_epochs: 30
|
configs/exp/contrastive_cell.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: osv5m_contrastive
|
5 |
+
- override /model: regression
|
6 |
+
- override /model/network: contrastive_unfrozen_backbone
|
7 |
+
- override /model/network/backbone: openclip_B_32
|
8 |
+
- override /model/loss: contrastive
|
9 |
+
- _self_
|
10 |
+
|
11 |
+
model:
|
12 |
+
optimizer:
|
13 |
+
optim:
|
14 |
+
lr: 2e-4
|
15 |
+
weight_decay: 0.0001
|
16 |
+
backbone_lr: 2e-5
|
17 |
+
|
18 |
+
class_name: quadtree_10_1000
|
19 |
+
is_baseline: false
|
20 |
+
max_epochs: 30
|
configs/exp/contrastive_city.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: osv5m_contrastive
|
5 |
+
- override /model: regression
|
6 |
+
- override /model/network: contrastive_unfrozen_backbone
|
7 |
+
- override /model/network/backbone: openclip_B_32
|
8 |
+
- override /model/loss: contrastive
|
9 |
+
- _self_
|
10 |
+
|
11 |
+
model:
|
12 |
+
optimizer:
|
13 |
+
optim:
|
14 |
+
lr: 2e-4
|
15 |
+
weight_decay: 0.0001
|
16 |
+
backbone_lr: 2e-5
|
17 |
+
|
18 |
+
class_name: city
|
19 |
+
is_baseline: false
|
20 |
+
max_epochs: 30
|
configs/exp/contrastive_country.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: osv5m_contrastive
|
5 |
+
- override /model: regression
|
6 |
+
- override /model/network: contrastive_unfrozen_backbone
|
7 |
+
- override /model/network/backbone: openclip_B_32
|
8 |
+
- override /model/loss: contrastive
|
9 |
+
- _self_
|
10 |
+
|
11 |
+
model:
|
12 |
+
optimizer:
|
13 |
+
optim:
|
14 |
+
lr: 2e-4
|
15 |
+
weight_decay: 0.0001
|
16 |
+
backbone_lr: 2e-5
|
17 |
+
|
18 |
+
class_name: country
|
19 |
+
is_baseline: false
|
20 |
+
max_epochs: 30
|
configs/exp/contrastive_region.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: osv5m_contrastive
|
5 |
+
- override /model: regression
|
6 |
+
- override /model/network: contrastive_unfrozen_backbone
|
7 |
+
- override /model/network/backbone: openclip_B_32
|
8 |
+
- override /model/loss: contrastive
|
9 |
+
- _self_
|
10 |
+
|
11 |
+
model:
|
12 |
+
optimizer:
|
13 |
+
optim:
|
14 |
+
lr: 2e-4
|
15 |
+
weight_decay: 0.0001
|
16 |
+
backbone_lr: 2e-5
|
17 |
+
|
18 |
+
class_name: region
|
19 |
+
is_baseline: false
|
20 |
+
max_epochs: 30
|
configs/exp/contrastive_text.yaml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: osv5m_text_contrastive
|
5 |
+
- override /model: text_tuning
|
6 |
+
- override /model/network/backbone: openclip_B_32
|
7 |
+
- _self_
|
8 |
+
|
9 |
+
model:
|
10 |
+
network:
|
11 |
+
backbone:
|
12 |
+
instance:
|
13 |
+
_target_: models.networks.backbones.CLIPText
|
14 |
+
optimizer:
|
15 |
+
optim:
|
16 |
+
lr: 0.0002
|
17 |
+
weight_decay: 0.0001
|
18 |
+
|
19 |
+
is_baseline: false
|
20 |
+
class_name: city
|
21 |
+
text_tuning: True
|
22 |
+
max_epochs: 30
|
configs/exp/eval_best_model.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /dataset: osv5m_contrastive_best
|
5 |
+
- override /model: hybrid
|
6 |
+
- override /model/network: best_backbone
|
7 |
+
- override /model/network/backbone: clip_L_14_DataComp
|
8 |
+
- override /model/network/mid: mlp_hybrid
|
9 |
+
- _self_
|
10 |
+
|
11 |
+
class_name: 'quadtree_10_1000'
|
12 |
+
is_baseline: false
|
13 |
+
max_epochs: 30
|
14 |
+
mode: 'eval'
|
15 |
+
|
16 |
+
model:
|
17 |
+
name: best_model
|
18 |
+
optimizer:
|
19 |
+
optim:
|
20 |
+
lr: 2e-4
|
21 |
+
weight_decay: 0.0001
|
22 |
+
backbone_lr: 2e-5
|
23 |
+
network:
|
24 |
+
head:
|
25 |
+
instance:
|
26 |
+
quadtree_path: ${root_dir}/quadtree_10_1000.csv
|
27 |
+
|
28 |
+
dataset:
|
29 |
+
global_batch_size: 2048
|
configs/exp/fine_tuning.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /model: regression
|
5 |
+
- override /model/network: unfrozen_backbone
|
6 |
+
- override /model/network/backbone: openclip_B_32
|
7 |
+
- _self_
|
8 |
+
|
9 |
+
model:
|
10 |
+
optimizer:
|
11 |
+
optim:
|
12 |
+
lr: 2e-4
|
13 |
+
weight_decay: 0.0001
|
14 |
+
backbone_lr: 2e-5
|
15 |
+
|
16 |
+
is_baseline: false
|
17 |
+
max_epochs: 30
|
18 |
+
|
19 |
+
dataset:
|
20 |
+
global_batch_size: 2048
|