trnt's picture
using cpu
abbb908
import gradio as gr
import torch
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from transformers import pipeline
model_path = "trnt/twitter_emotions"
is_gpu = False
device = torch.device('cuda') if is_gpu else torch.device('cpu')
print(device)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.to(device)
model.eval()
print("Model was loaded")
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, device=is_gpu-1)
emotions = {'LABEL_0': 'sadness', 'LABEL_1': 'joy', 'LABEL_2': 'love', 'LABEL_3': 'anger', 'LABEL_4': 'fear',
'LABEL_5': 'surprise'}
examples = ["I love you!", "I hate you!"]
def predict(twitter):
pred = classifier(twitter, return_all_scores=True)[0]
res = {"Sadness": pred[0]["score"],
"Joy": pred[1]["score"],
"Love": pred[2]["score"],
"Anger": pred[3]["score"],
"Fear": pred[4]["score"],
"Surprise": pred[5]["score"]}
# "This tweet is %s with probability=%.2f" % (emotions[pred['label']], 100 * pred['score']) + "%"
return res
if __name__ == '__main__':
interFace = gr.Interface(fn=predict,
inputs=gr.inputs.Textbox(placeholder="Enter a tweet here", label="Tweet content", lines=5),
outputs=gr.outputs.Label(num_top_classes=6, label="Emotions of this tweet is "),
verbose=True,
examples=examples,
title="Emotions of English tweet",
description="",
theme="grass")
interFace.launch()