Spaces:
Runtime error
Runtime error
Use text-generation inference 🔥🔥
Browse files- app.py +107 -41
- requirements.txt +6 -6
app.py
CHANGED
@@ -1,12 +1,16 @@
|
|
|
|
1 |
import os
|
2 |
-
from threading import Thread
|
3 |
|
4 |
import gradio as gr
|
5 |
-
import torch
|
6 |
-
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
7 |
-
|
8 |
from huggingface_hub import Repository
|
9 |
-
import
|
|
|
|
|
|
|
|
|
10 |
|
11 |
theme = gr.themes.Monochrome(
|
12 |
primary_hue="indigo",
|
@@ -16,27 +20,32 @@ theme = gr.themes.Monochrome(
|
|
16 |
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
|
17 |
)
|
18 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
19 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
20 |
if HF_TOKEN:
|
21 |
repo = Repository(
|
22 |
local_dir="data", clone_from="trl-lib/stack-llama-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
|
23 |
)
|
24 |
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
-
model_id = "trl-lib/llama-se-rl-merged"
|
28 |
-
print(f"Loading model: {model_id}")
|
29 |
-
if device == "cpu":
|
30 |
-
|
31 |
-
else:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN)
|
37 |
|
38 |
PROMPT_TEMPLATE = """Question: {prompt}\n\nAnswer:"""
|
39 |
|
|
|
40 |
def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
|
41 |
with open(os.path.join("data", "prompts.jsonl"), "a") as f:
|
42 |
json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
|
@@ -44,44 +53,101 @@ def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
|
|
44 |
commit_url = repo.push_to_hub()
|
45 |
|
46 |
|
47 |
-
def generate(instruction, temperature=0.9, max_new_tokens=128, top_p=0.95, top_k=100):
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
|
50 |
|
51 |
temperature = float(temperature)
|
52 |
top_p = float(top_p)
|
53 |
-
streamer = TextIteratorStreamer(tokenizer)
|
54 |
-
model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048).to(device)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
temperature=temperature,
|
|
|
59 |
max_new_tokens=max_new_tokens,
|
60 |
-
|
61 |
top_k=top_k,
|
62 |
-
|
63 |
-
pad_token_id=tokenizer.eos_token_id,
|
64 |
)
|
65 |
-
t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
|
66 |
-
t.start()
|
67 |
|
68 |
output = ""
|
69 |
-
|
70 |
-
|
71 |
-
# skip streaming until new text is available
|
72 |
-
if len(hidden_output) <= len(formatted_instruction):
|
73 |
-
hidden_output += new_text
|
74 |
-
continue
|
75 |
-
# replace eos token
|
76 |
-
# if tokenizer.eos_token in new_text:
|
77 |
-
# new_text = new_text.replace(tokenizer.eos_token, "")
|
78 |
-
output += new_text
|
79 |
yield output
|
80 |
-
|
81 |
-
print("Pushing prompt and completion to the Hub")
|
82 |
-
save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
|
83 |
return output
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
examples = [
|
87 |
"A llama is in my lawn. How do I get rid of him?",
|
@@ -167,4 +233,4 @@ with gr.Blocks(theme=theme, analytics_enabled=False, css=".generating {visibilit
|
|
167 |
instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
|
168 |
|
169 |
demo.queue(concurrency_count=1)
|
170 |
-
demo.launch(enable_queue=True)
|
|
|
1 |
+
import json
|
2 |
import os
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
+
# import torch
|
6 |
+
# from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
7 |
+
# TextIteratorStreamer, set_seed)
|
8 |
from huggingface_hub import Repository
|
9 |
+
from text_generation import Client
|
10 |
+
|
11 |
+
# from threading import Thread
|
12 |
+
|
13 |
+
|
14 |
|
15 |
theme = gr.themes.Monochrome(
|
16 |
primary_hue="indigo",
|
|
|
20 |
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
|
21 |
)
|
22 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
23 |
+
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
24 |
if HF_TOKEN:
|
25 |
repo = Repository(
|
26 |
local_dir="data", clone_from="trl-lib/stack-llama-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
|
27 |
)
|
28 |
|
29 |
+
client = Client(
|
30 |
+
"https://api-inference.huggingface.co/models/trl-lib/llama-se-rl-merged",
|
31 |
+
headers={"Authorization": f"Bearer {HF_TOKEN}"},
|
32 |
+
)
|
33 |
|
34 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
+
# model_id = "trl-lib/llama-se-rl-merged"
|
36 |
+
# print(f"Loading model: {model_id}")
|
37 |
+
# if device == "cpu":
|
38 |
+
# model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, use_auth_token=HF_TOKEN)
|
39 |
+
# else:
|
40 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
# model_id, device_map="auto", load_in_8bit=True, use_auth_token=HF_TOKEN
|
42 |
+
# )
|
43 |
|
44 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN)
|
45 |
|
46 |
PROMPT_TEMPLATE = """Question: {prompt}\n\nAnswer:"""
|
47 |
|
48 |
+
|
49 |
def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
|
50 |
with open(os.path.join("data", "prompts.jsonl"), "a") as f:
|
51 |
json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
|
|
|
53 |
commit_url = repo.push_to_hub()
|
54 |
|
55 |
|
56 |
+
# def generate(instruction, temperature=0.9, max_new_tokens=128, top_p=0.95, top_k=100):
|
57 |
+
# set_seed(42)
|
58 |
+
# formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
|
59 |
+
|
60 |
+
# temperature = float(temperature)
|
61 |
+
# top_p = float(top_p)
|
62 |
+
# streamer = TextIteratorStreamer(tokenizer)
|
63 |
+
# model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048).to(device)
|
64 |
+
|
65 |
+
# generate_kwargs = dict(
|
66 |
+
# top_p=top_p,
|
67 |
+
# temperature=temperature,
|
68 |
+
# max_new_tokens=max_new_tokens,
|
69 |
+
# do_sample=True,
|
70 |
+
# top_k=top_k,
|
71 |
+
# eos_token_id=tokenizer.eos_token_id,
|
72 |
+
# pad_token_id=tokenizer.eos_token_id,
|
73 |
+
# )
|
74 |
+
# t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
|
75 |
+
# t.start()
|
76 |
+
|
77 |
+
# output = ""
|
78 |
+
# hidden_output = ""
|
79 |
+
# for new_text in streamer:
|
80 |
+
# # skip streaming until new text is available
|
81 |
+
# if len(hidden_output) <= len(formatted_instruction):
|
82 |
+
# hidden_output += new_text
|
83 |
+
# continue
|
84 |
+
# # replace eos token
|
85 |
+
# # if tokenizer.eos_token in new_text:
|
86 |
+
# # new_text = new_text.replace(tokenizer.eos_token, "")
|
87 |
+
# output += new_text
|
88 |
+
# yield output
|
89 |
+
# if HF_TOKEN:
|
90 |
+
# print("Pushing prompt and completion to the Hub")
|
91 |
+
# save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
|
92 |
+
# return output
|
93 |
+
|
94 |
+
|
95 |
+
def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k=100):
|
96 |
+
# set_seed(42)
|
97 |
formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
|
98 |
|
99 |
temperature = float(temperature)
|
100 |
top_p = float(top_p)
|
|
|
|
|
101 |
|
102 |
+
stream = client.generate_stream(
|
103 |
+
formatted_instruction,
|
104 |
temperature=temperature,
|
105 |
+
truncate=999,
|
106 |
max_new_tokens=max_new_tokens,
|
107 |
+
top_p=top_p,
|
108 |
top_k=top_k,
|
109 |
+
# stop_sequences=["</s>"],
|
|
|
110 |
)
|
|
|
|
|
111 |
|
112 |
output = ""
|
113 |
+
for response in stream:
|
114 |
+
output += response.token.text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
yield output
|
116 |
+
|
|
|
|
|
117 |
return output
|
118 |
|
119 |
+
# streamer = TextIteratorStreamer(tokenizer)
|
120 |
+
# model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048).to(device)
|
121 |
+
|
122 |
+
# generate_kwargs = dict(
|
123 |
+
# top_p=top_p,
|
124 |
+
# temperature=temperature,
|
125 |
+
# max_new_tokens=max_new_tokens,
|
126 |
+
# do_sample=True,
|
127 |
+
# top_k=top_k,
|
128 |
+
# # eos_token_id=tokenizer.eos_token_id,
|
129 |
+
# # pad_token_id=tokenizer.eos_token_id,
|
130 |
+
# )
|
131 |
+
# t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
|
132 |
+
# t.start()
|
133 |
+
|
134 |
+
# output = ""
|
135 |
+
# hidden_output = ""
|
136 |
+
# for new_text in streamer:
|
137 |
+
# # skip streaming until new text is available
|
138 |
+
# if len(hidden_output) <= len(formatted_instruction):
|
139 |
+
# hidden_output += new_text
|
140 |
+
# continue
|
141 |
+
# # replace eos token
|
142 |
+
# # if tokenizer.eos_token in new_text:
|
143 |
+
# # new_text = new_text.replace(tokenizer.eos_token, "")
|
144 |
+
# output += new_text
|
145 |
+
# yield output
|
146 |
+
# if HF_TOKEN:
|
147 |
+
# print("Pushing prompt and completion to the Hub")
|
148 |
+
# save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
|
149 |
+
# return output
|
150 |
+
|
151 |
|
152 |
examples = [
|
153 |
"A llama is in my lawn. How do I get rid of him?",
|
|
|
233 |
instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
|
234 |
|
235 |
demo.queue(concurrency_count=1)
|
236 |
+
demo.launch(enable_queue=True) # , share=True)
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
huggingface_hub
|
2 |
-
bitsandbytes
|
3 |
-
sentencepiece
|
4 |
-
git+https://github.com/huggingface/transformers.git@98268b2e76189d65f7068625cf382ebe03b98480
|
5 |
-
accelerate>=0.16.0
|
6 |
-
bitsandbytes
|
7 |
-
sentencepiece
|
|
|
1 |
huggingface_hub
|
2 |
+
# bitsandbytes
|
3 |
+
# sentencepiece
|
4 |
+
# git+https://github.com/huggingface/transformers.git@98268b2e76189d65f7068625cf382ebe03b98480
|
5 |
+
# accelerate>=0.16.0
|
6 |
+
# bitsandbytes
|
7 |
+
# sentencepiece
|