Spaces:
Runtime error
Runtime error
import json | |
import os | |
import gradio as gr | |
from huggingface_hub import Repository | |
from text_generation import Client | |
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css | |
HF_TOKEN = os.environ.get("TRL_TOKEN", None) | |
API_URL = os.environ.get("API_URL") | |
theme = gr.themes.Monochrome( | |
primary_hue="indigo", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
radius_size=gr.themes.sizes.radius_sm, | |
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], | |
) | |
if HF_TOKEN: | |
repo = Repository( | |
local_dir="data", clone_from="trl-lib/stack-llama-prompts", use_auth_token=HF_TOKEN, repo_type="dataset" | |
) | |
repo.git_pull() | |
client = Client( | |
API_URL, | |
headers={"Authorization": f"Bearer {HF_TOKEN}"}, | |
) | |
PROMPT_TEMPLATE = """Question: {prompt}\n\nAnswer:""" | |
def save_inputs_and_outputs(inputs, outputs, generate_kwargs): | |
with open(os.path.join("data", "prompts.jsonl"), "a") as f: | |
json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False) | |
f.write("\n") | |
commit_url = repo.push_to_hub() | |
def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k=100): | |
formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction) | |
temperature = float(temperature) | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
top_k=top_k, | |
do_sample=True, | |
truncate=999, | |
seed=42, | |
stop_sequences=["</s>"], | |
) | |
stream = client.generate_stream( | |
formatted_instruction, | |
**generate_kwargs, | |
) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
if HF_TOKEN: | |
print("Pushing prompt and completion to the Hub") | |
save_inputs_and_outputs(formatted_instruction, output, generate_kwargs) | |
return output | |
examples = [ | |
"A llama is in my lawn. How do I get rid of him?", | |
"How do I create an array in C++ which contains all even numbers between 1 and 10?", | |
"How can I sort a list in Python?", | |
"How can I write a Java function to generate the nth Fibonacci number?", | |
"How many helicopters can a llama eat in one sitting?", | |
] | |
def process_example(args): | |
for x in generate(args): | |
pass | |
return x | |
css = ".generating {visibility: hidden}" + share_btn_css | |
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo: | |
with gr.Column(): | |
gr.Markdown( | |
"""<h1><center>π¦π¦π¦ StackLLaMa π¦π¦π¦</center></h1> | |
StackLLaMa is a 7 billion parameter language model that has been trained on pairs of questions and answers from [Stack Exchange](https://stackexchange.com) using Reinforcement Learning from Human Feedback with the [TRL library](https://github.com/lvwerra/trl). For more details, check out our [blog post](https://huggingface.co/blog/stackllama). | |
Type in the box below and click the button to generate answers to your most pressing questions π₯! | |
**Note:** we are collecting your prompts and model completions for research purposes. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input") | |
with gr.Box(): | |
gr.Markdown("**Answer**") | |
output = gr.Markdown(elem_id="q-output") | |
submit = gr.Button("Generate", variant="primary") | |
with gr.Group(elem_id="share-btn-container"): | |
community_icon = gr.HTML(community_icon_html, visible=True) | |
loading_icon = gr.HTML(loading_icon_html, visible=True) | |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True) | |
gr.Examples( | |
examples=examples, | |
inputs=[instruction], | |
cache_examples=True, | |
fn=process_example, | |
outputs=[output], | |
) | |
with gr.Column(scale=1): | |
temperature = gr.Slider( | |
label="Temperature", | |
value=0.8, | |
minimum=0.01, | |
maximum=2.0, | |
step=0.1, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
) | |
max_new_tokens = gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=2048, | |
step=4, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
) | |
top_p = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.95, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
) | |
top_k = gr.Slider( | |
label="Top-k", | |
value=40, | |
minimum=0, | |
maximum=100, | |
step=2, | |
interactive=True, | |
info="Sample from top-k tokens", | |
) | |
submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output]) | |
instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output]) | |
share_button.click(None, [], [], _js=share_js) | |
demo.queue(concurrency_count=16).launch(debug=True) | |