Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import tempfile | |
from transformers.testing_utils import check_json_file_has_correct_format | |
class FeatureExtractionSavingTestMixin: | |
test_cast_dtype = None | |
def test_feat_extract_to_json_string(self): | |
feat_extract = self.feature_extraction_class(**self.feat_extract_dict) | |
obj = json.loads(feat_extract.to_json_string()) | |
for key, value in self.feat_extract_dict.items(): | |
self.assertEqual(obj[key], value) | |
def test_feat_extract_to_json_file(self): | |
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
json_file_path = os.path.join(tmpdirname, "feat_extract.json") | |
feat_extract_first.to_json_file(json_file_path) | |
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) | |
self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict()) | |
def test_feat_extract_from_and_save_pretrained(self): | |
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] | |
check_json_file_has_correct_format(saved_file) | |
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) | |
self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict()) | |
def test_init_without_params(self): | |
feat_extract = self.feature_extraction_class() | |
self.assertIsNotNone(feat_extract) | |