Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library models for question answering. | |
""" | |
# You can also adapt this script on your own question answering task. Pointers for this are left as comments. | |
import json | |
import logging | |
import os | |
import sys | |
import warnings | |
from dataclasses import dataclass, field | |
from pathlib import Path | |
from typing import Optional | |
import evaluate | |
import tensorflow as tf | |
from datasets import load_dataset | |
from utils_qa import postprocess_qa_predictions | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoTokenizer, | |
EvalPrediction, | |
HfArgumentParser, | |
PreTrainedTokenizerFast, | |
PushToHubCallback, | |
TFAutoModelForQuestionAnswering, | |
TFTrainingArguments, | |
create_optimizer, | |
set_seed, | |
) | |
from transformers.utils import CONFIG_NAME, TF2_WEIGHTS_NAME, check_min_version, send_example_telemetry | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version("4.33.0.dev0") | |
logger = logging.getLogger(__name__) | |
# region Arguments | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
token: str = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
) | |
}, | |
) | |
use_auth_token: bool = field( | |
default=None, | |
metadata={ | |
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." | |
}, | |
) | |
trust_remote_code: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" | |
"should only be set to `True` for repositories you trust and in which you have read the code, as it will" | |
"execute code present on the Hub on your local machine." | |
) | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
dataset_name: Optional[str] = field( | |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
) | |
test_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
max_seq_length: int = field( | |
default=384, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
pad_to_max_length: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when" | |
" batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)." | |
) | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
"value if set." | |
) | |
}, | |
) | |
version_2_with_negative: bool = field( | |
default=False, metadata={"help": "If true, some of the examples do not have an answer."} | |
) | |
null_score_diff_threshold: float = field( | |
default=0.0, | |
metadata={ | |
"help": ( | |
"The threshold used to select the null answer: if the best answer has a score that is less than " | |
"the score of the null answer minus this threshold, the null answer is selected for this example. " | |
"Only useful when `version_2_with_negative=True`." | |
) | |
}, | |
) | |
doc_stride: int = field( | |
default=128, | |
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, | |
) | |
n_best_size: int = field( | |
default=20, | |
metadata={"help": "The total number of n-best predictions to generate when looking for an answer."}, | |
) | |
max_answer_length: int = field( | |
default=30, | |
metadata={ | |
"help": ( | |
"The maximum length of an answer that can be generated. This is needed because the start " | |
"and end predictions are not conditioned on one another." | |
) | |
}, | |
) | |
def __post_init__(self): | |
if ( | |
self.dataset_name is None | |
and self.train_file is None | |
and self.validation_file is None | |
and self.test_file is None | |
): | |
raise ValueError("Need either a dataset name or a training/validation file/test_file.") | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
if self.test_file is not None: | |
extension = self.test_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." | |
# endregion | |
# region Helper classes | |
class SavePretrainedCallback(tf.keras.callbacks.Callback): | |
# Hugging Face models have a save_pretrained() method that saves both the weights and the necessary | |
# metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback | |
# that saves the model with this method after each epoch. | |
def __init__(self, output_dir, **kwargs): | |
super().__init__() | |
self.output_dir = output_dir | |
def on_epoch_end(self, epoch, logs=None): | |
self.model.save_pretrained(self.output_dir) | |
# endregion | |
def main(): | |
# region Argument parsing | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
if model_args.use_auth_token is not None: | |
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) | |
if model_args.token is not None: | |
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
model_args.token = model_args.use_auth_token | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_qa", model_args, data_args, framework="tensorflow") | |
output_dir = Path(training_args.output_dir) | |
output_dir.mkdir(parents=True, exist_ok=True) | |
# endregion | |
# region Checkpoints | |
checkpoint = None | |
if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir: | |
if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file(): | |
checkpoint = output_dir | |
logger.info( | |
f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this" | |
" behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
else: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to continue regardless." | |
) | |
# endregion | |
# region Logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
logger.setLevel(logging.INFO if training_args.should_log else logging.WARN) | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
if training_args.should_log: | |
transformers.utils.logging.set_verbosity_info() | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# endregion | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# region Load Data | |
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
# 'text' is found. You can easily tweak this behavior (see below). | |
# | |
# In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
# download the dataset. | |
if data_args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
datasets = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
cache_dir=model_args.cache_dir, | |
token=model_args.token, | |
) | |
else: | |
data_files = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
extension = data_args.train_file.split(".")[-1] | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = data_args.validation_file.split(".")[-1] | |
if data_args.test_file is not None: | |
data_files["test"] = data_args.test_file | |
extension = data_args.test_file.split(".")[-1] | |
datasets = load_dataset( | |
extension, | |
data_files=data_files, | |
field="data", | |
cache_dir=model_args.cache_dir, | |
token=model_args.token, | |
) | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# endregion | |
# region Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config = AutoConfig.from_pretrained( | |
model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
token=model_args.token, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_fast=True, | |
revision=model_args.model_revision, | |
token=model_args.token, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
# endregion | |
# region Tokenizer check: this script requires a fast tokenizer. | |
if not isinstance(tokenizer, PreTrainedTokenizerFast): | |
raise ValueError( | |
"This example script only works for models that have a fast tokenizer. Checkout the big table of models at" | |
" https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet" | |
" this requirement" | |
) | |
# endregion | |
# region Preprocessing the datasets | |
# Preprocessing is slightly different for training and evaluation. | |
if training_args.do_train: | |
column_names = datasets["train"].column_names | |
elif training_args.do_eval: | |
column_names = datasets["validation"].column_names | |
else: | |
column_names = datasets["test"].column_names | |
question_column_name = "question" if "question" in column_names else column_names[0] | |
context_column_name = "context" if "context" in column_names else column_names[1] | |
answer_column_name = "answers" if "answers" in column_names else column_names[2] | |
# Padding side determines if we do (question|context) or (context|question). | |
pad_on_right = tokenizer.padding_side == "right" | |
if data_args.max_seq_length > tokenizer.model_max_length: | |
logger.warning( | |
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" | |
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
) | |
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
if data_args.pad_to_max_length or isinstance(training_args.strategy, tf.distribute.TPUStrategy): | |
logger.info("Padding all batches to max length because argument was set or we're on TPU.") | |
padding = "max_length" | |
else: | |
padding = False | |
# Training preprocessing | |
def prepare_train_features(examples): | |
# Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
# left whitespace | |
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] | |
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
# in one example possible giving several features when a context is long, each of those features having a | |
# context that overlaps a bit the context of the previous feature. | |
tokenized_examples = tokenizer( | |
examples[question_column_name if pad_on_right else context_column_name], | |
examples[context_column_name if pad_on_right else question_column_name], | |
truncation="only_second" if pad_on_right else "only_first", | |
max_length=max_seq_length, | |
stride=data_args.doc_stride, | |
return_overflowing_tokens=True, | |
return_offsets_mapping=True, | |
padding=padding, | |
) | |
# Since one example might give us several features if it has a long context, we need a map from a feature to | |
# its corresponding example. This key gives us just that. | |
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
# The offset mappings will give us a map from token to character position in the original context. This will | |
# help us compute the start_positions and end_positions. | |
offset_mapping = tokenized_examples.pop("offset_mapping") | |
# Let's label those examples! | |
tokenized_examples["start_positions"] = [] | |
tokenized_examples["end_positions"] = [] | |
for i, offsets in enumerate(offset_mapping): | |
# We will label impossible answers with the index of the CLS token. | |
input_ids = tokenized_examples["input_ids"][i] | |
cls_index = input_ids.index(tokenizer.cls_token_id) | |
# Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
sequence_ids = tokenized_examples.sequence_ids(i) | |
# One example can give several spans, this is the index of the example containing this span of text. | |
sample_index = sample_mapping[i] | |
answers = examples[answer_column_name][sample_index] | |
# If no answers are given, set the cls_index as answer. | |
if len(answers["answer_start"]) == 0: | |
tokenized_examples["start_positions"].append(cls_index) | |
tokenized_examples["end_positions"].append(cls_index) | |
else: | |
# Start/end character index of the answer in the text. | |
start_char = answers["answer_start"][0] | |
end_char = start_char + len(answers["text"][0]) | |
# Start token index of the current span in the text. | |
token_start_index = 0 | |
while sequence_ids[token_start_index] != (1 if pad_on_right else 0): | |
token_start_index += 1 | |
# End token index of the current span in the text. | |
token_end_index = len(input_ids) - 1 | |
while sequence_ids[token_end_index] != (1 if pad_on_right else 0): | |
token_end_index -= 1 | |
# Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). | |
if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): | |
tokenized_examples["start_positions"].append(cls_index) | |
tokenized_examples["end_positions"].append(cls_index) | |
else: | |
# Otherwise move the token_start_index and token_end_index to the two ends of the answer. | |
# Note: we could go after the last offset if the answer is the last word (edge case). | |
while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: | |
token_start_index += 1 | |
tokenized_examples["start_positions"].append(token_start_index - 1) | |
while offsets[token_end_index][1] >= end_char: | |
token_end_index -= 1 | |
tokenized_examples["end_positions"].append(token_end_index + 1) | |
return tokenized_examples | |
processed_datasets = {} | |
if training_args.do_train: | |
if "train" not in datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = datasets["train"] | |
if data_args.max_train_samples is not None: | |
# We will select sample from whole data if agument is specified | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
# Create train feature from dataset | |
train_dataset = train_dataset.map( | |
prepare_train_features, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
) | |
if data_args.max_train_samples is not None: | |
# Number of samples might increase during Feature Creation, We select only specified max samples | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
processed_datasets["train"] = train_dataset | |
# Validation preprocessing | |
def prepare_validation_features(examples): | |
# Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
# left whitespace | |
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] | |
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
# in one example possible giving several features when a context is long, each of those features having a | |
# context that overlaps a bit the context of the previous feature. | |
tokenized_examples = tokenizer( | |
examples[question_column_name if pad_on_right else context_column_name], | |
examples[context_column_name if pad_on_right else question_column_name], | |
truncation="only_second" if pad_on_right else "only_first", | |
max_length=max_seq_length, | |
stride=data_args.doc_stride, | |
return_overflowing_tokens=True, | |
return_offsets_mapping=True, | |
padding=padding, | |
) | |
# Since one example might give us several features if it has a long context, we need a map from a feature to | |
# its corresponding example. This key gives us just that. | |
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the | |
# corresponding example_id and we will store the offset mappings. | |
tokenized_examples["example_id"] = [] | |
for i in range(len(tokenized_examples["input_ids"])): | |
# Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
sequence_ids = tokenized_examples.sequence_ids(i) | |
context_index = 1 if pad_on_right else 0 | |
# One example can give several spans, this is the index of the example containing this span of text. | |
sample_index = sample_mapping[i] | |
tokenized_examples["example_id"].append(examples["id"][sample_index]) | |
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token | |
# position is part of the context or not. | |
tokenized_examples["offset_mapping"][i] = [ | |
(o if sequence_ids[k] == context_index else None) | |
for k, o in enumerate(tokenized_examples["offset_mapping"][i]) | |
] | |
return tokenized_examples | |
if training_args.do_eval: | |
if "validation" not in datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_examples = datasets["validation"] | |
if data_args.max_eval_samples is not None: | |
# We will select sample from whole data | |
max_eval_samples = min(len(eval_examples), data_args.max_eval_samples) | |
eval_examples = eval_examples.select(range(max_eval_samples)) | |
# Validation Feature Creation | |
eval_dataset = eval_examples.map( | |
prepare_validation_features, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
) | |
if data_args.max_eval_samples is not None: | |
# During Feature creation dataset samples might increase, we will select required samples again | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
processed_datasets["validation"] = eval_dataset | |
if training_args.do_predict: | |
if "test" not in datasets: | |
raise ValueError("--do_predict requires a test dataset") | |
predict_examples = datasets["test"] | |
if data_args.max_predict_samples is not None: | |
# We will select sample from whole data | |
predict_examples = predict_examples.select(range(data_args.max_predict_samples)) | |
# Predict Feature Creation | |
predict_dataset = predict_examples.map( | |
prepare_validation_features, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
) | |
if data_args.max_predict_samples is not None: | |
# During Feature creation dataset samples might increase, we will select required samples again | |
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
processed_datasets["test"] = predict_dataset | |
# endregion | |
# region Metrics and Post-processing: | |
def post_processing_function(examples, features, predictions, stage="eval"): | |
# Post-processing: we match the start logits and end logits to answers in the original context. | |
predictions = postprocess_qa_predictions( | |
examples=examples, | |
features=features, | |
predictions=predictions, | |
version_2_with_negative=data_args.version_2_with_negative, | |
n_best_size=data_args.n_best_size, | |
max_answer_length=data_args.max_answer_length, | |
null_score_diff_threshold=data_args.null_score_diff_threshold, | |
output_dir=training_args.output_dir, | |
prefix=stage, | |
) | |
# Format the result to the format the metric expects. | |
if data_args.version_2_with_negative: | |
formatted_predictions = [ | |
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() | |
] | |
else: | |
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] | |
references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] | |
return EvalPrediction(predictions=formatted_predictions, label_ids=references) | |
metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad") | |
def compute_metrics(p: EvalPrediction): | |
return metric.compute(predictions=p.predictions, references=p.label_ids) | |
# endregion | |
with training_args.strategy.scope(): | |
dataset_options = tf.data.Options() | |
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF | |
num_replicas = training_args.strategy.num_replicas_in_sync | |
# region Load model and prepare datasets | |
if checkpoint is None: | |
model_path = model_args.model_name_or_path | |
else: | |
model_path = checkpoint | |
model = TFAutoModelForQuestionAnswering.from_pretrained( | |
model_path, | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
token=model_args.token, | |
trust_remote_code=model_args.trust_remote_code, | |
) | |
if training_args.do_train: | |
training_dataset = model.prepare_tf_dataset( | |
processed_datasets["train"], | |
shuffle=True, | |
batch_size=training_args.per_device_train_batch_size * num_replicas, | |
tokenizer=tokenizer, | |
) | |
training_dataset = training_dataset.with_options(dataset_options) | |
num_train_steps = len(training_dataset) * training_args.num_train_epochs | |
if training_args.warmup_steps > 0: | |
num_warmup_steps = training_args.warmup_steps | |
elif training_args.warmup_ratio > 0: | |
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) | |
else: | |
num_warmup_steps = 0 | |
optimizer, schedule = create_optimizer( | |
init_lr=training_args.learning_rate, | |
num_train_steps=len(training_dataset) * training_args.num_train_epochs, | |
num_warmup_steps=num_warmup_steps, | |
adam_beta1=training_args.adam_beta1, | |
adam_beta2=training_args.adam_beta2, | |
adam_epsilon=training_args.adam_epsilon, | |
weight_decay_rate=training_args.weight_decay, | |
adam_global_clipnorm=training_args.max_grad_norm, | |
) | |
# Transformers models compute the right loss for their task by default when labels are passed, and will | |
# use this for training unless you specify your own loss function in compile(). | |
model.compile(optimizer=optimizer, jit_compile=training_args.xla, metrics=["accuracy"]) | |
else: | |
model.compile(optimizer=None, jit_compile=training_args.xla, metrics=["accuracy"]) | |
training_dataset = None | |
if training_args.do_eval: | |
eval_dataset = model.prepare_tf_dataset( | |
processed_datasets["validation"], | |
shuffle=False, | |
batch_size=training_args.per_device_train_batch_size * num_replicas, | |
tokenizer=tokenizer, | |
) | |
eval_dataset = eval_dataset.with_options(dataset_options) | |
else: | |
eval_dataset = None | |
if training_args.do_predict: | |
predict_dataset = model.prepare_tf_dataset( | |
processed_datasets["test"], | |
shuffle=False, | |
batch_size=training_args.per_device_eval_batch_size * num_replicas, | |
tokenizer=tokenizer, | |
) | |
predict_dataset = predict_dataset.with_options(dataset_options) | |
else: | |
predict_dataset = None | |
# endregion | |
# region Preparing push_to_hub and model card | |
push_to_hub_model_id = training_args.push_to_hub_model_id | |
model_name = model_args.model_name_or_path.split("/")[-1] | |
if not push_to_hub_model_id: | |
if data_args.dataset_name is not None: | |
push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}" | |
else: | |
push_to_hub_model_id = f"{model_name}-finetuned-question-answering" | |
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"} | |
if data_args.dataset_name is not None: | |
model_card_kwargs["dataset_tags"] = data_args.dataset_name | |
if data_args.dataset_config_name is not None: | |
model_card_kwargs["dataset_args"] = data_args.dataset_config_name | |
model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | |
else: | |
model_card_kwargs["dataset"] = data_args.dataset_name | |
if training_args.push_to_hub: | |
callbacks = [ | |
PushToHubCallback( | |
output_dir=training_args.output_dir, | |
hub_model_id=push_to_hub_model_id, | |
hub_token=training_args.push_to_hub_token, | |
tokenizer=tokenizer, | |
**model_card_kwargs, | |
) | |
] | |
else: | |
callbacks = [] | |
# endregion | |
# region Training and Evaluation | |
if training_args.do_train: | |
# Note that the validation and test datasets have been processed in a different way to the | |
# training datasets in this example, and so they don't have the same label structure. | |
# As such, we don't pass them directly to Keras, but instead get model predictions to evaluate | |
# after training. | |
model.fit(training_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks) | |
if training_args.do_eval: | |
logger.info("*** Evaluation ***") | |
# In this example, we compute advanced metrics at the end of training, but | |
# if you'd like to compute metrics every epoch that are too complex to be written as | |
# standard Keras metrics, you can use our KerasMetricCallback. See | |
# https://huggingface.co/docs/transformers/main/en/main_classes/keras_callbacks | |
eval_predictions = model.predict(eval_dataset) | |
if isinstance(eval_predictions.start_logits, tf.RaggedTensor): | |
# If predictions are RaggedTensor, we densify them. Since they are logits, padding with 0 is a bad idea! | |
# The reason is that a logit of 0 can often end up as quite a high probability value, sometimes even | |
# the highest probability in a sample. Instead, we use a large negative value, which ensures that the | |
# padding positions are correctly masked. | |
eval_start_logits = eval_predictions.start_logits.to_tensor(default_value=-1000).numpy() | |
eval_end_logits = eval_predictions.end_logits.to_tensor(default_value=-1000).numpy() | |
else: | |
eval_start_logits = eval_predictions.start_logits | |
eval_end_logits = eval_predictions.end_logits | |
post_processed_eval = post_processing_function( | |
datasets["validation"], | |
processed_datasets["validation"], | |
(eval_start_logits, eval_end_logits), | |
) | |
metrics = compute_metrics(post_processed_eval) | |
logging.info("Evaluation metrics:") | |
for metric, value in metrics.items(): | |
logging.info(f"{metric}: {value:.3f}") | |
if training_args.output_dir is not None: | |
output_eval_file = os.path.join(training_args.output_dir, "all_results.json") | |
with open(output_eval_file, "w") as writer: | |
writer.write(json.dumps(metrics)) | |
# endregion | |
# region Prediction | |
if training_args.do_predict: | |
logger.info("*** Predict ***") | |
test_predictions = model.predict(predict_dataset) | |
if isinstance(test_predictions.start_logits, tf.RaggedTensor): | |
# If predictions are RaggedTensor, we densify them. Since they are logits, padding with 0 is a bad idea! | |
# The reason is that a logit of 0 can often end up as quite a high probability value, sometimes even | |
# the highest probability in a sample. Instead, we use a large negative value, which ensures that the | |
# padding positions are correctly masked. | |
test_start_logits = test_predictions.start_logits.to_tensor(default_value=-1000).numpy() | |
test_end_logits = test_predictions.end_logits.to_tensor(default_value=-1000).numpy() | |
else: | |
test_start_logits = test_predictions.start_logits | |
test_end_logits = test_predictions.end_logits | |
post_processed_test = post_processing_function( | |
datasets["test"], | |
processed_datasets["test"], | |
(test_start_logits, test_end_logits), | |
) | |
metrics = compute_metrics(post_processed_test) | |
logging.info("Test metrics:") | |
for metric, value in metrics.items(): | |
logging.info(f"{metric}: {value:.3f}") | |
# endregion | |
if training_args.output_dir is not None and not training_args.push_to_hub: | |
# If we're not pushing to hub, at least save a local copy when we're done | |
model.save_pretrained(training_args.output_dir) | |
if __name__ == "__main__": | |
main() | |