Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| """ Fine-tuning a 🤗 Transformers pretrained speech model on the XTREME-S benchmark tasks""" | |
| import json | |
| import logging | |
| import os | |
| import re | |
| import sys | |
| from collections import OrderedDict, defaultdict | |
| from dataclasses import dataclass, field | |
| from typing import Dict, List, Optional, Union | |
| import datasets | |
| import numpy as np | |
| import torch | |
| from datasets import DatasetDict, load_dataset, load_metric | |
| import transformers | |
| from transformers import ( | |
| AutoConfig, | |
| AutoFeatureExtractor, | |
| AutoModelForAudioClassification, | |
| AutoModelForCTC, | |
| AutoModelForSpeechSeq2Seq, | |
| AutoProcessor, | |
| AutoTokenizer, | |
| HfArgumentParser, | |
| Seq2SeqTrainer, | |
| Seq2SeqTrainingArguments, | |
| Trainer, | |
| set_seed, | |
| ) | |
| from transformers.trainer_utils import get_last_checkpoint, is_main_process | |
| from transformers.utils import check_min_version | |
| from transformers.utils.versions import require_version | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version("4.18.0.dev0") | |
| require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt") | |
| logger = logging.getLogger(__name__) | |
| def list_field(default=None, metadata=None): | |
| return field(default_factory=lambda: default, metadata=metadata) | |
| TASK_TO_TARGET_COLUMN_NAME = { | |
| "fleurs-asr": "transcription", | |
| "fleurs-lang_id": "lang_id", | |
| "mls": "transcription", | |
| "voxpopuli": "transcription", | |
| "covost2": "translation", | |
| "minds14": "intent_class", | |
| "babel": "transcription", | |
| } | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| tokenizer_name_or_path: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"}, | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Where do you want to store the pretrained models and datasets downloaded from huggingface.co" | |
| }, | |
| ) | |
| freeze_feature_encoder: bool = field( | |
| default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."} | |
| ) | |
| attention_dropout: float = field( | |
| default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."} | |
| ) | |
| activation_dropout: float = field( | |
| default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} | |
| ) | |
| feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."}) | |
| hidden_dropout: float = field( | |
| default=0.0, | |
| metadata={ | |
| "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." | |
| }, | |
| ) | |
| final_dropout: float = field( | |
| default=0.0, | |
| metadata={"help": "The dropout probability for the final projection layer."}, | |
| ) | |
| mask_time_prob: float = field( | |
| default=0.05, | |
| metadata={ | |
| "help": ( | |
| "Probability of each feature vector along the time axis to be chosen as the start of the vector" | |
| "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" | |
| "vectors will be masked along the time axis." | |
| ) | |
| }, | |
| ) | |
| mask_time_length: int = field( | |
| default=10, | |
| metadata={"help": "Length of vector span to mask along the time axis."}, | |
| ) | |
| mask_feature_prob: float = field( | |
| default=0.0, | |
| metadata={ | |
| "help": ( | |
| "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan" | |
| " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature" | |
| " bins will be masked along the time axis." | |
| ) | |
| }, | |
| ) | |
| mask_feature_length: int = field( | |
| default=10, | |
| metadata={"help": "Length of vector span to mask along the feature axis."}, | |
| ) | |
| layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."}) | |
| ctc_zero_infinity: bool = field( | |
| default=False, | |
| metadata={"help": "Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`."}, | |
| ) | |
| ctc_loss_reduction: Optional[str] = field( | |
| default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."} | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| Using `HfArgumentParser` we can turn this class | |
| into argparse arguments to be able to specify them on | |
| the command line. | |
| """ | |
| dataset_name: str = field( | |
| default="google/xtreme_s", | |
| metadata={"help": "The name of the dataset to use (via the datasets library). Defaults to 'google/xtreme_s'"}, | |
| ) | |
| task: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The task name of the benchmark to use (via the datasets library). Should be on of: " | |
| "'fleurs-asr', 'mls', 'voxpopuli', 'covost2', 'minds14', 'fleurs-lang_id', 'babel'." | |
| ) | |
| }, | |
| ) | |
| language: str = field( | |
| default="all", | |
| metadata={"help": "The language id as defined in the datasets config name or `all` for all languages."}, | |
| ) | |
| language_group: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The language group to select a subset of languages to train on. " | |
| "This option is only used the 'fleurs-asr' task. Should be one of: " | |
| "'western_european_we', 'eastern_european_ee', 'central_asia_middle_north_african_cmn', " | |
| "'sub_saharan_african_ssa', 'south_asian_sa', 'south_east_asian_sea', 'chinese_japanase_korean_cjk'." | |
| ) | |
| }, | |
| ) | |
| train_split_name: str = field( | |
| default="train", | |
| metadata={ | |
| "help": "The name of the training dataset split to use (via the datasets library). Defaults to 'train'" | |
| }, | |
| ) | |
| eval_split_name: str = field( | |
| default="validation", | |
| metadata={ | |
| "help": ( | |
| "The name of the evaluation dataset split to use (via the datasets library). Defaults to 'validation'" | |
| ) | |
| }, | |
| ) | |
| predict_split_name: str = field( | |
| default="test", | |
| metadata={ | |
| "help": "The name of the prediction dataset split to use (via the datasets library). Defaults to 'test'" | |
| }, | |
| ) | |
| audio_column_name: str = field( | |
| default="audio", | |
| metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, | |
| ) | |
| target_column_name: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The name of the dataset column containing the target data (transcription/translation/label). If None," | |
| " the name will be inferred from the task. Defaults to None." | |
| ) | |
| }, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of validation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_predict_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| chars_to_ignore: Optional[List[str]] = list_field( | |
| default=', ? . ! - ; : " “ % ‘ ” �'.split(" "), | |
| metadata={"help": "A list of characters to remove from the transcripts."}, | |
| ) | |
| max_duration_in_seconds: float = field( | |
| default=30.0, | |
| metadata={ | |
| "help": ( | |
| "Filter audio files that are longer than `max_duration_in_seconds` seconds to" | |
| " 'max_duration_in_seconds`" | |
| ) | |
| }, | |
| ) | |
| min_duration_in_seconds: float = field( | |
| default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} | |
| ) | |
| preprocessing_only: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether to only do data preprocessing and skip training. This is especially useful when data" | |
| " preprocessing errors out in distributed training due to timeout. In this case, one should run the" | |
| " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets" | |
| " can consequently be loaded in distributed training" | |
| ) | |
| }, | |
| ) | |
| use_auth_token: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "If :obj:`True`, will use the token generated when running" | |
| ":obj:`huggingface-cli login` as HTTP bearer authorization for remote files." | |
| ) | |
| }, | |
| ) | |
| unk_token: str = field( | |
| default="[UNK]", | |
| metadata={"help": "The unk token for the tokenizer"}, | |
| ) | |
| pad_token: str = field( | |
| default="[PAD]", | |
| metadata={"help": "The padding token for the tokenizer"}, | |
| ) | |
| word_delimiter_token: str = field( | |
| default="|", | |
| metadata={"help": "The word delimiter token for the tokenizer"}, | |
| ) | |
| phoneme_language: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The target language that should be used be" | |
| " passed to the tokenizer for tokenization. Note that" | |
| " this is only relevant if the model classifies the" | |
| " input audio to a sequence of phoneme sequences." | |
| ) | |
| }, | |
| ) | |
| per_lang_metrics: bool = field( | |
| default=True, | |
| metadata={ | |
| "help": ( | |
| "If `True`, compute the test metrics separately for each language, and average the results. " | |
| "If `False` compute the average test metrics in a single pass for all languages at once." | |
| ) | |
| }, | |
| ) | |
| class SpeechDataCollatorWithPadding: | |
| processor: AutoProcessor | |
| decoder_start_token_id: Optional[int] = None | |
| padding: Union[bool, str] = "longest" | |
| pad_labels: Optional[int] = True | |
| pad_to_multiple_of: Optional[int] = None | |
| pad_to_multiple_of_labels: Optional[int] = None | |
| def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: | |
| # split inputs and labels since they have to be of different lenghts and need | |
| # different padding methods | |
| input_features = [{"input_values": feature["input_values"]} for feature in features] | |
| batch = self.processor.pad( | |
| input_features, | |
| padding=self.padding, | |
| pad_to_multiple_of=self.pad_to_multiple_of, | |
| return_tensors="pt", | |
| ) | |
| if self.pad_labels: | |
| label_features = [{"input_ids": feature["labels"]} for feature in features] | |
| labels_batch = self.processor.pad( | |
| labels=label_features, | |
| padding=self.padding, | |
| pad_to_multiple_of=self.pad_to_multiple_of_labels, | |
| return_tensors="pt", | |
| ) | |
| # replace padding with -100 to ignore loss correctly | |
| labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) | |
| # if bos token is appended in previous tokenization step, | |
| # cut bos token here as it's append later anyways | |
| if ( | |
| self.decoder_start_token_id is not None | |
| and (labels[:, 0] == self.decoder_start_token_id).all().cpu().item() | |
| ): | |
| labels = labels[:, 1:] | |
| batch["labels"] = labels | |
| else: | |
| batch["labels"] = torch.tensor([feature["labels"] for feature in features]) | |
| return batch | |
| def create_vocabulary_from_data( | |
| datasets: DatasetDict, | |
| word_delimiter_token: Optional[str] = None, | |
| unk_token: Optional[str] = None, | |
| pad_token: Optional[str] = None, | |
| ): | |
| # Given training and test labels create vocabulary | |
| def extract_all_chars(batch): | |
| all_text = " ".join(batch["target_text"]) | |
| vocab = list(set(all_text)) | |
| return {"vocab": [vocab], "all_text": [all_text]} | |
| vocabs = datasets.map( | |
| extract_all_chars, | |
| batched=True, | |
| batch_size=-1, | |
| keep_in_memory=True, | |
| remove_columns=datasets["train"].column_names, | |
| ) | |
| # take union of all unique characters in each dataset | |
| vocab_set = ( | |
| (set(vocabs["train"]["vocab"][0]) if "train" in vocabs else set()) | |
| | (set(vocabs["eval"]["vocab"][0]) if "eval" in vocabs else set()) | |
| | (set(vocabs["predict"]["vocab"][0]) if "predict" in vocabs else set()) | |
| ) | |
| vocab_dict = {v: k for k, v in enumerate(sorted(vocab_set))} | |
| # replace white space with delimiter token | |
| if word_delimiter_token is not None: | |
| vocab_dict[word_delimiter_token] = vocab_dict[" "] | |
| del vocab_dict[" "] | |
| # add unk and pad token | |
| if unk_token is not None: | |
| vocab_dict[unk_token] = len(vocab_dict) | |
| if pad_token is not None: | |
| vocab_dict[pad_token] = len(vocab_dict) | |
| return vocab_dict | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| # Detecting last checkpoint. | |
| last_checkpoint = None | |
| if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
| last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
| if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| elif last_checkpoint is not None: | |
| logger.info( | |
| f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
| "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) | |
| # Log on each process the small summary: | |
| logger.warning( | |
| f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
| f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
| ) | |
| # Set the verbosity to info of the Transformers logger (on main process only): | |
| if is_main_process(training_args.local_rank): | |
| transformers.utils.logging.set_verbosity_info() | |
| logger.info("Training/evaluation parameters %s", training_args) | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # 1. First, let's load the dataset | |
| raw_datasets = DatasetDict() | |
| task_name = data_args.task | |
| lang_id = data_args.language | |
| if task_name is None: | |
| raise ValueError( | |
| "Set --task should be set to '<xtreme_s_task>' (e.g. 'fleurs-asr', 'mls', 'covost2', 'minds14') " | |
| ) | |
| if lang_id is None: | |
| raise ValueError( | |
| "Set --language should be set to the language id of the sub dataset " | |
| "config to be used (e.g. 'pl', 'en.tr', 'fr-FR') or 'all'" | |
| " for multi-lingual fine-tuning." | |
| ) | |
| if data_args.language_group is not None: | |
| if data_args.task != "fleurs-asr": | |
| raise ValueError("--language_group should only be used with --task=fleurs-asr") | |
| if data_args.language != "all": | |
| raise ValueError("--language_group should only be used with --language=all") | |
| if data_args.target_column_name is None: | |
| target_column_name = TASK_TO_TARGET_COLUMN_NAME[task_name] | |
| else: | |
| target_column_name = data_args.target_column_name | |
| # here we differentiate between tasks with text as the target and classification tasks | |
| is_text_target = target_column_name in ("transcription", "translation") | |
| config_name = ".".join([task_name.split("-")[0], lang_id]) | |
| if training_args.do_train: | |
| raw_datasets["train"] = load_dataset( | |
| data_args.dataset_name, | |
| config_name, | |
| split=data_args.train_split_name, | |
| use_auth_token=data_args.use_auth_token, | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| if data_args.audio_column_name not in raw_datasets["train"].column_names: | |
| raise ValueError( | |
| f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'." | |
| " Make sure to set `--audio_column_name` to the correct audio column - one of" | |
| f" {', '.join(raw_datasets['train'].column_names)}." | |
| ) | |
| if target_column_name not in raw_datasets["train"].column_names: | |
| raise ValueError( | |
| f"--target_column_name {target_column_name} not found in dataset '{data_args.dataset_name}'. " | |
| "Make sure to set `--target_column_name` to the correct text column - one of " | |
| f"{', '.join(raw_datasets['train'].column_names)}." | |
| ) | |
| if data_args.max_train_samples is not None: | |
| raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) | |
| if training_args.do_eval: | |
| raw_datasets["eval"] = load_dataset( | |
| data_args.dataset_name, | |
| config_name, | |
| split=data_args.eval_split_name, | |
| use_auth_token=data_args.use_auth_token, | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| if data_args.max_eval_samples is not None: | |
| raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) | |
| if training_args.do_predict: | |
| raw_datasets["predict"] = load_dataset( | |
| data_args.dataset_name, | |
| config_name, | |
| split=data_args.predict_split_name, | |
| use_auth_token=data_args.use_auth_token, | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| if data_args.max_predict_samples is not None: | |
| raw_datasets["predict"] = raw_datasets["predict"].select(range(data_args.max_predict_samples)) | |
| lang_list = next(iter(raw_datasets.values())).features["lang_id"].names | |
| if not is_text_target: | |
| label_list = next(iter(raw_datasets.values())).features[target_column_name].names | |
| num_labels = len(label_list) | |
| num_workers = data_args.preprocessing_num_workers | |
| lang_group = data_args.language_group | |
| if lang_group is not None: | |
| with training_args.main_process_first(desc="language group filter"): | |
| lang_group_id = next(iter(raw_datasets.values())).features["lang_group_id"].str2int(lang_group) | |
| raw_datasets = raw_datasets.filter( | |
| lambda lang_group: lang_group == lang_group_id, | |
| num_proc=num_workers, | |
| input_columns=["lang_group_id"], | |
| ) | |
| # 2. We remove some special characters from the datasets | |
| # that make training complicated and do not help in transcribing the speech | |
| # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic | |
| # that could be easily picked up by the model | |
| chars_to_ignore_regex = ( | |
| f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None | |
| ) | |
| def remove_special_characters(batch): | |
| if chars_to_ignore_regex is not None: | |
| batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[target_column_name]).lower() + " " | |
| else: | |
| batch["target_text"] = batch[target_column_name].lower() + " " | |
| return batch | |
| if is_text_target: | |
| with training_args.main_process_first(desc="dataset map special characters removal"): | |
| raw_datasets = raw_datasets.map( | |
| remove_special_characters, | |
| remove_columns=[target_column_name], | |
| desc="remove special characters from datasets", | |
| ) | |
| # save special tokens for tokenizer | |
| word_delimiter_token = data_args.word_delimiter_token | |
| unk_token = data_args.unk_token | |
| pad_token = data_args.pad_token | |
| # 3. Next, let's load the config as we might need it to create | |
| # the tokenizer | |
| config = AutoConfig.from_pretrained( | |
| model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token | |
| ) | |
| if is_text_target: | |
| # 4. (Optional, for ASR and translation) If no tokenizer file is defined, | |
| # we create the vocabulary of the model by extracting all unique characters from | |
| # the training and evaluation datasets | |
| # We need to make sure that only first rank saves vocabulary | |
| # make sure all processes wait until vocab is created | |
| tokenizer_name_or_path = model_args.tokenizer_name_or_path | |
| tokenizer_kwargs = {} | |
| if tokenizer_name_or_path is None: | |
| # save vocab in training output dir | |
| tokenizer_name_or_path = training_args.output_dir | |
| vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json") | |
| with training_args.main_process_first(): | |
| if training_args.overwrite_output_dir and os.path.isfile(vocab_file): | |
| os.remove(vocab_file) | |
| with training_args.main_process_first(desc="dataset map vocabulary creation"): | |
| if not os.path.isfile(vocab_file): | |
| os.makedirs(tokenizer_name_or_path, exist_ok=True) | |
| vocab_dict = create_vocabulary_from_data( | |
| raw_datasets, | |
| word_delimiter_token=word_delimiter_token, | |
| unk_token=unk_token, | |
| pad_token=pad_token, | |
| ) | |
| # save vocab dict to be loaded into tokenizer | |
| with open(vocab_file, "w") as file: | |
| json.dump(vocab_dict, file) | |
| # if tokenizer has just been created | |
| # it is defined by `tokenizer_class` if present in config else by `model_type` | |
| if not config.is_encoder_decoder: | |
| tokenizer_kwargs = { | |
| "config": config if config.tokenizer_class is not None else None, | |
| "tokenizer_type": config.model_type if config.tokenizer_class is None else None, | |
| "unk_token": unk_token, | |
| "pad_token": pad_token, | |
| "word_delimiter_token": word_delimiter_token, | |
| } | |
| else: | |
| tokenizer_kwargs = {} | |
| # 5. Now we can instantiate the feature extractor, tokenizer and model | |
| # Note for distributed training, the .from_pretrained methods guarantee that only | |
| # one local process can concurrently download model & vocab. | |
| # load feature_extractor and tokenizer | |
| if is_text_target: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| tokenizer_name_or_path, | |
| use_auth_token=data_args.use_auth_token, | |
| **tokenizer_kwargs, | |
| ) | |
| feature_extractor = AutoFeatureExtractor.from_pretrained( | |
| model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token | |
| ) | |
| # adapt config | |
| # (speech translation requires pre-configured seq2seq models) | |
| if task_name != "covost2": | |
| config.update( | |
| { | |
| "feat_proj_dropout": model_args.feat_proj_dropout, | |
| "attention_dropout": model_args.attention_dropout, | |
| "hidden_dropout": model_args.hidden_dropout, | |
| "final_dropout": model_args.final_dropout, | |
| "mask_time_prob": model_args.mask_time_prob, | |
| "mask_time_length": model_args.mask_time_length, | |
| "mask_feature_prob": model_args.mask_feature_prob, | |
| "mask_feature_length": model_args.mask_feature_length, | |
| "gradient_checkpointing": training_args.gradient_checkpointing, | |
| "layerdrop": model_args.layerdrop, | |
| "ctc_zero_infinity": model_args.ctc_zero_infinity, | |
| "ctc_loss_reduction": model_args.ctc_loss_reduction, | |
| "activation_dropout": model_args.activation_dropout, | |
| } | |
| ) | |
| if training_args.do_train: | |
| if is_text_target: | |
| config.pad_token_id = tokenizer.pad_token_id | |
| config.vocab_size = len(tokenizer) | |
| else: | |
| label_to_id = {v: i for i, v in enumerate(label_list)} | |
| config.label2id = label_to_id | |
| config.id2label = {id: label for label, id in label_to_id.items()} | |
| config.num_labels = num_labels | |
| # create model | |
| if target_column_name == "transcription": | |
| model = AutoModelForCTC.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| config=config, | |
| use_auth_token=data_args.use_auth_token, | |
| ) | |
| elif config.is_encoder_decoder: | |
| model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| config=config, | |
| use_auth_token=data_args.use_auth_token, | |
| ) | |
| if model.config.decoder_start_token_id is None: | |
| raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") | |
| else: | |
| model = AutoModelForAudioClassification.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| config=config, | |
| use_auth_token=data_args.use_auth_token, | |
| ) | |
| # freeze encoder | |
| if model_args.freeze_feature_encoder: | |
| model.freeze_feature_encoder() | |
| # 6. Now we preprocess the datasets including loading the audio, resampling and normalization | |
| # Thankfully, `datasets` takes care of automatically loading and resampling the audio, | |
| # so that we just need to set the correct target sampling rate and normalize the input | |
| # via the `feature_extractor` | |
| # make sure that dataset decodes audio with correct sampling rate | |
| dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate | |
| if dataset_sampling_rate != feature_extractor.sampling_rate: | |
| raw_datasets = raw_datasets.cast_column( | |
| data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) | |
| ) | |
| # derive max & min input length for sample rate & max duration | |
| max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate | |
| min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate | |
| audio_column_name = data_args.audio_column_name | |
| # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification | |
| phoneme_language = data_args.phoneme_language | |
| # Preprocessing the datasets. | |
| # We need to read the audio files as arrays and tokenize the targets. | |
| def prepare_dataset(batch): | |
| # load audio | |
| sample = batch[audio_column_name] | |
| inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) | |
| batch["input_values"] = inputs.input_values[0] | |
| batch["length"] = len(batch["input_values"]) | |
| # encode targets | |
| additional_kwargs = {} | |
| if phoneme_language is not None: | |
| additional_kwargs["phonemizer_lang"] = phoneme_language | |
| if is_text_target: | |
| batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids | |
| else: | |
| batch["labels"] = batch[target_column_name] | |
| batch["lang"] = batch["lang_id"] | |
| return batch | |
| with training_args.main_process_first(desc="dataset map preprocessing"): | |
| vectorized_datasets = raw_datasets.map( | |
| prepare_dataset, | |
| remove_columns=next(iter(raw_datasets.values())).column_names, | |
| num_proc=num_workers, | |
| desc="preprocess datasets", | |
| ) | |
| if training_args.do_train: | |
| def is_audio_in_length_range(length): | |
| return length > min_input_length and length < max_input_length | |
| # filter data that is shorter than min_input_length | |
| vectorized_datasets["train"] = vectorized_datasets["train"].filter( | |
| is_audio_in_length_range, | |
| num_proc=num_workers, | |
| input_columns=["length"], | |
| ) | |
| # 7. Next, we can prepare for the training step. | |
| # Let's use the appropriate XTREME-S evaluation metric, | |
| # instantiate a data collator and the trainer | |
| # Define evaluation metrics during training, *i.e.* word error rate, character error rate | |
| eval_metric = load_metric("xtreme_s", task_name) | |
| # for large datasets it is advised to run the preprocessing on a | |
| # single machine first with ``args.preprocessing_only`` since there will mostly likely | |
| # be a timeout when running the script in distributed mode. | |
| # In a second step ``args.preprocessing_only`` can then be set to `False` to load the | |
| # cached dataset | |
| if data_args.preprocessing_only: | |
| logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}") | |
| return | |
| def asr_logits_argmax(logits, labels): | |
| return logits.argmax(dim=-1) | |
| def compute_asr_metric(pred): | |
| pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id | |
| pred_str = tokenizer.batch_decode(pred.predictions) | |
| # we do not want to group tokens when computing the metrics | |
| label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False) | |
| metric = eval_metric.compute(predictions=pred_str, references=label_str) | |
| return metric | |
| def compute_classification_metric(pred): | |
| pred_ids = np.argmax(pred.predictions, axis=1) | |
| metric = eval_metric.compute(predictions=pred_ids, references=pred.label_ids) | |
| return metric | |
| # Now save everything to be able to create a single processor later | |
| if is_main_process(training_args.local_rank): | |
| # save feature extractor, tokenizer and config | |
| feature_extractor.save_pretrained(training_args.output_dir) | |
| if is_text_target: | |
| tokenizer.save_pretrained(training_args.output_dir) | |
| config.save_pretrained(training_args.output_dir) | |
| # wait until configs are saved in the main process before loading the processor | |
| if training_args.local_rank != -1: | |
| torch.distributed.barrier() | |
| if is_text_target: | |
| processor = AutoProcessor.from_pretrained(training_args.output_dir) | |
| else: | |
| processor = AutoFeatureExtractor.from_pretrained(training_args.output_dir) | |
| # Instantiate custom data collator | |
| data_collator = SpeechDataCollatorWithPadding(processor=processor, pad_labels=is_text_target) | |
| # Initialize Trainer | |
| if target_column_name == "translation": | |
| trainer = Seq2SeqTrainer( | |
| model=model, | |
| data_collator=data_collator, | |
| args=training_args, | |
| preprocess_logits_for_metrics=asr_logits_argmax if training_args.predict_with_generate else None, | |
| compute_metrics=compute_asr_metric if training_args.predict_with_generate else None, | |
| train_dataset=vectorized_datasets["train"] if training_args.do_train else None, | |
| eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, | |
| tokenizer=feature_extractor, | |
| ) | |
| else: | |
| trainer = Trainer( | |
| model=model, | |
| data_collator=data_collator, | |
| args=training_args, | |
| preprocess_logits_for_metrics=asr_logits_argmax if is_text_target else None, | |
| compute_metrics=compute_asr_metric if is_text_target else compute_classification_metric, | |
| train_dataset=vectorized_datasets["train"] if training_args.do_train else None, | |
| eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, | |
| tokenizer=feature_extractor, | |
| ) | |
| # 8. Finally, we can start training | |
| # Training | |
| if training_args.do_train: | |
| # use last checkpoint if exist | |
| if last_checkpoint is not None: | |
| checkpoint = last_checkpoint | |
| elif os.path.isdir(model_args.model_name_or_path): | |
| checkpoint = model_args.model_name_or_path | |
| else: | |
| checkpoint = None | |
| train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
| trainer.save_model() | |
| metrics = train_result.metrics | |
| max_train_samples = ( | |
| data_args.max_train_samples | |
| if data_args.max_train_samples is not None | |
| else len(vectorized_datasets["train"]) | |
| ) | |
| metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) | |
| trainer.log_metrics("train", metrics) | |
| trainer.save_metrics("train", metrics) | |
| trainer.save_state() | |
| # Evaluation on the test set | |
| results = {} | |
| if training_args.do_predict: | |
| logger.info(f"*** Evaluating on the `{data_args.predict_split_name}` set ***") | |
| if data_args.per_lang_metrics: | |
| # separate the `test` dataset into language-specific subsets and compute metrics for each of them | |
| metrics = {} | |
| average_metrics = defaultdict(list) | |
| for lang_id in range(len(lang_list)): | |
| lang_name = lang_list[lang_id] | |
| with training_args.main_process_first(desc="per-language dataset filter"): | |
| lang_dataset = vectorized_datasets["predict"].filter( | |
| lambda lang: lang == lang_id, | |
| num_proc=num_workers, | |
| input_columns=["lang"], | |
| ) | |
| lang_metrics = trainer.evaluate(lang_dataset) | |
| redundant_metrics = ["eval_runtime", "eval_samples_per_second", "eval_steps_per_second", "eval_epoch"] | |
| for metric_name, value in lang_metrics.items(): | |
| average_metrics[metric_name].append(value) | |
| if metric_name not in redundant_metrics: | |
| metrics[f"{metric_name}_{lang_name}"] = value | |
| for metric_name, value in average_metrics.items(): | |
| metrics[metric_name] = np.mean(value) | |
| else: | |
| metrics = trainer.evaluate(vectorized_datasets["predict"]) | |
| max_predict_samples = ( | |
| data_args.max_predict_samples | |
| if data_args.max_predict_samples is not None | |
| else len(vectorized_datasets["predict"]) | |
| ) | |
| metrics["predict_samples"] = min(max_predict_samples, len(vectorized_datasets["predict"])) | |
| # make sure that the `predict` metrics end up in the log history for the model card | |
| trainer.log(OrderedDict(sorted(metrics.items()))) | |
| trainer.log_metrics("predict", metrics) | |
| trainer.save_metrics("predict", metrics) | |
| # Write model card and (optionally) push to hub | |
| kwargs = { | |
| "finetuned_from": model_args.model_name_or_path, | |
| "tasks": task_name, | |
| "tags": [task_name, data_args.dataset_name], | |
| "dataset_args": ( | |
| f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:" | |
| f" {data_args.eval_split_name}, Predict split: {data_args.predict_split_name}" | |
| ), | |
| "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}", | |
| "language": data_args.language, | |
| } | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(**kwargs) | |
| else: | |
| trainer.create_model_card(**kwargs) | |
| return results | |
| if __name__ == "__main__": | |
| main() | |