Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
-
import
|
| 4 |
-
from
|
| 5 |
-
from typing import Dict, Any, Optional, Tuple
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
from PIL import Image, ImageStat
|
|
@@ -27,19 +26,6 @@ NEGATIVE_BASELINE = (
|
|
| 27 |
"deformed hands, blurry, depth map artifacts, harsh HDR, unrealistic colors"
|
| 28 |
)
|
| 29 |
|
| 30 |
-
DEFAULT_SDXL_SETTINGS = {
|
| 31 |
-
"steps": 34,
|
| 32 |
-
"cfg": 5,
|
| 33 |
-
"sampler": "DPM++ SDE Karras",
|
| 34 |
-
"resolution": "1024 on long side",
|
| 35 |
-
"refiner": 0.25,
|
| 36 |
-
"hires": "1.5–2.0x upscale for micro‑detail"
|
| 37 |
-
}
|
| 38 |
-
|
| 39 |
-
# Lightweight captioner (free CPU). If unavailable, reverse will degrade gracefully.
|
| 40 |
-
CAPTION_MODEL = "Salesforce/blip-image-captioning-base" # CPU-friendly
|
| 41 |
-
|
| 42 |
-
|
| 43 |
@dataclass
|
| 44 |
class CameraSpec:
|
| 45 |
cameraBody: str = ""
|
|
@@ -47,7 +33,6 @@ class CameraSpec:
|
|
| 47 |
aperture: str = ""
|
| 48 |
iso: Optional[int] = None
|
| 49 |
|
| 50 |
-
|
| 51 |
@dataclass
|
| 52 |
class PromptFields:
|
| 53 |
subject: str = ""
|
|
@@ -63,17 +48,19 @@ class PromptFields:
|
|
| 63 |
aspectRatio: str = "4:5"
|
| 64 |
negatives: str = NEGATIVE_BASELINE
|
| 65 |
model: str = "sdxl" # "mj" | "sdxl" | "dalle"
|
|
|
|
| 66 |
settings_mj_s: int = 100
|
| 67 |
settings_mj_chaos: int = 5
|
| 68 |
settings_mj_seed: int = 42
|
|
|
|
| 69 |
settings_sdxl_steps: int = 34
|
| 70 |
settings_sdxl_cfg: int = 5
|
| 71 |
settings_sdxl_sampler: str = "DPM++ SDE Karras"
|
| 72 |
settings_sdxl_resolution: str = "1024x1280"
|
| 73 |
settings_sdxl_refiner: float = 0.25
|
|
|
|
| 74 |
settings_dalle_resolution: str = "1024x1024"
|
| 75 |
|
| 76 |
-
|
| 77 |
def realism_string(enabled: bool) -> str:
|
| 78 |
if not enabled:
|
| 79 |
return ""
|
|
@@ -83,26 +70,17 @@ def realism_string(enabled: bool) -> str:
|
|
| 83 |
"subtle chromatic aberration, vignette."
|
| 84 |
)
|
| 85 |
|
| 86 |
-
|
| 87 |
-
def safe_join(parts):
|
| 88 |
return " ".join([p.strip() for p in parts if p and str(p).strip()]).replace(" ", " ").strip()
|
| 89 |
|
| 90 |
-
|
| 91 |
def build_universal(f: PromptFields) -> str:
|
| 92 |
-
|
| 93 |
-
s1 = ""
|
| 94 |
-
if f.subject:
|
| 95 |
-
s1 = f"Photo of {f.subject}"
|
| 96 |
-
else:
|
| 97 |
-
s1 = "Photo"
|
| 98 |
-
|
| 99 |
if f.environment:
|
| 100 |
s1 += f" in/at {f.environment}"
|
| 101 |
if f.timeWeather:
|
| 102 |
s1 += f", {f.timeWeather}"
|
| 103 |
s1 += "."
|
| 104 |
|
| 105 |
-
# Camera
|
| 106 |
cam_bits = []
|
| 107 |
if f.camera and f.camera.focalLengthMm:
|
| 108 |
cam_bits.append(f"{f.camera.focalLengthMm}mm lens")
|
|
@@ -110,10 +88,7 @@ def build_universal(f: PromptFields) -> str:
|
|
| 110 |
cam_bits.append(f"at {f.camera.aperture}")
|
| 111 |
if f.camera and f.camera.iso:
|
| 112 |
cam_bits.append(f"ISO {f.camera.iso}")
|
| 113 |
-
if cam_bits
|
| 114 |
-
s2 = "Shot with a " + ", ".join(cam_bits) + "."
|
| 115 |
-
else:
|
| 116 |
-
s2 = ""
|
| 117 |
|
| 118 |
s3 = f"{f.composition}." if f.composition else ""
|
| 119 |
s4 = f"Lighting: {f.lighting}." if f.lighting else ""
|
|
@@ -122,14 +97,11 @@ def build_universal(f: PromptFields) -> str:
|
|
| 122 |
s7 = f"Color & grade: {f.colorGrade}." if f.colorGrade else ""
|
| 123 |
s8 = realism_string(f.realismCues)
|
| 124 |
|
| 125 |
-
|
| 126 |
-
return universal
|
| 127 |
-
|
| 128 |
|
| 129 |
def format_midjourney(universal: str, f: PromptFields) -> str:
|
| 130 |
return f"{universal} --style raw --ar {f.aspectRatio} --s {f.settings_mj_s} --chaos {f.settings_mj_chaos} --seed {f.settings_mj_seed}"
|
| 131 |
|
| 132 |
-
|
| 133 |
def format_sdxl(universal: str, f: PromptFields) -> Dict[str, Any]:
|
| 134 |
return {
|
| 135 |
"positive": universal,
|
|
@@ -144,12 +116,10 @@ def format_sdxl(universal: str, f: PromptFields) -> Dict[str, Any]:
|
|
| 144 |
}
|
| 145 |
}
|
| 146 |
|
| 147 |
-
|
| 148 |
def format_dalle(universal: str, f: PromptFields) -> Dict[str, Any]:
|
| 149 |
prose = f"A high‑resolution photograph. {universal}"
|
| 150 |
return {"prompt": prose, "resolution": f.settings_dalle_resolution}
|
| 151 |
|
| 152 |
-
|
| 153 |
def compose(
|
| 154 |
subject, environment, timeWeather,
|
| 155 |
cameraBody, focalLengthMm, aperture, iso,
|
|
@@ -187,26 +157,33 @@ def compose(
|
|
| 187 |
settings_sdxl_refiner=float(sdxl_refiner) if str(sdxl_refiner).strip() else 0.25,
|
| 188 |
settings_dalle_resolution=dalle_resolution or "1024x1024",
|
| 189 |
)
|
| 190 |
-
|
| 191 |
universal = build_universal(f)
|
| 192 |
mj = format_midjourney(universal, f)
|
| 193 |
sdxl = format_sdxl(universal, f)
|
| 194 |
dalle = format_dalle(universal, f)
|
| 195 |
return universal, mj, sdxl, dalle, (f.negatives or NEGATIVE_BASELINE)
|
| 196 |
|
| 197 |
-
|
| 198 |
# ---------- Reverse prompt helpers ----------
|
| 199 |
|
|
|
|
| 200 |
def init_captioner():
|
| 201 |
if not HAS_TRANSFORMERS:
|
| 202 |
return None
|
| 203 |
try:
|
| 204 |
-
return pipeline("image-to-text", model=
|
| 205 |
except Exception:
|
| 206 |
return None
|
| 207 |
-
|
| 208 |
CAPTIONER = init_captioner()
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
def download_haarcascade() -> Optional[str]:
|
| 212 |
if cv2 is None:
|
|
@@ -225,7 +202,6 @@ def download_haarcascade() -> Optional[str]:
|
|
| 225 |
except Exception:
|
| 226 |
return None
|
| 227 |
|
| 228 |
-
|
| 229 |
def detect_faces(pil_img: Image.Image) -> int:
|
| 230 |
if cv2 is None:
|
| 231 |
return 0
|
|
@@ -241,28 +217,75 @@ def detect_faces(pil_img: Image.Image) -> int:
|
|
| 241 |
except Exception:
|
| 242 |
return 0
|
| 243 |
|
| 244 |
-
|
| 245 |
def avg_brightness(pil_img: Image.Image) -> float:
|
| 246 |
stat = ImageStat.Stat(pil_img.convert("L"))
|
| 247 |
return float(stat.mean[0])
|
| 248 |
|
| 249 |
-
|
| 250 |
def nearest_aspect(w: int, h: int) -> str:
|
| 251 |
target = w / h
|
| 252 |
-
candidates = {
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
}
|
| 260 |
-
|
| 261 |
-
return
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
def extract_fields_from_image(img: Image.Image) -> Dict[str, Any]:
|
| 265 |
-
# Caption
|
| 266 |
caption = ""
|
| 267 |
if CAPTIONER:
|
| 268 |
try:
|
|
@@ -271,38 +294,55 @@ def extract_fields_from_image(img: Image.Image) -> Dict[str, Any]:
|
|
| 271 |
caption = out[0].get("generated_text", "")
|
| 272 |
except Exception:
|
| 273 |
caption = ""
|
| 274 |
-
|
| 275 |
brightness = avg_brightness(img)
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
-
# Faces -> portrait heuristics
|
| 279 |
faces = detect_faces(img)
|
| 280 |
-
if faces > 0:
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
iso = 200 if "day" in timeWeather else 800
|
| 286 |
-
|
| 287 |
-
lighting = "soft
|
| 288 |
-
micro = "skin pores,
|
| 289 |
-
motion = "
|
|
|
|
| 290 |
else:
|
| 291 |
-
subject = caption or "a real-world scene"
|
| 292 |
-
composition = "eye‑level, balanced framing, leading lines, shallow DOF"
|
| 293 |
focal = 35
|
| 294 |
aperture = "f/2.8"
|
| 295 |
iso = 200 if "day" in timeWeather else 800
|
| 296 |
-
|
| 297 |
-
lighting = "soft natural light
|
| 298 |
micro = "texture of materials, dust, subtle scratches, specular highlights"
|
| 299 |
motion = "slight motion blur if present, volumetric light if applicable"
|
|
|
|
| 300 |
|
| 301 |
w, h = img.size
|
| 302 |
aspect = nearest_aspect(w, h)
|
| 303 |
|
| 304 |
-
|
| 305 |
-
"subject":
|
|
|
|
| 306 |
"environment": "",
|
| 307 |
"timeWeather": timeWeather,
|
| 308 |
"camera": {
|
|
@@ -321,15 +361,12 @@ def extract_fields_from_image(img: Image.Image) -> Dict[str, Any]:
|
|
| 321 |
"negatives": NEGATIVE_BASELINE,
|
| 322 |
"model": "sdxl"
|
| 323 |
}
|
| 324 |
-
return fields
|
| 325 |
-
|
| 326 |
|
| 327 |
def reverse_prompt(image: Image.Image):
|
| 328 |
if image is None:
|
| 329 |
-
return
|
| 330 |
|
| 331 |
fields = extract_fields_from_image(image)
|
| 332 |
-
# Build objects
|
| 333 |
f = PromptFields(
|
| 334 |
subject=fields["subject"],
|
| 335 |
environment=fields.get("environment", ""),
|
|
@@ -353,8 +390,10 @@ def reverse_prompt(image: Image.Image):
|
|
| 353 |
mj = format_midjourney(universal, f)
|
| 354 |
sdxl = format_sdxl(universal, f)
|
| 355 |
dalle = format_dalle(universal, f)
|
| 356 |
-
return fields, universal, mj, sdxl, dalle, (fields.get("negatives") or NEGATIVE_BASELINE)
|
| 357 |
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
# ---------- Presets ----------
|
| 360 |
|
|
@@ -417,7 +456,6 @@ PRESETS = {
|
|
| 417 |
)
|
| 418 |
}
|
| 419 |
|
| 420 |
-
|
| 421 |
def load_preset(name: str):
|
| 422 |
f = PRESETS.get(name)
|
| 423 |
if not f:
|
|
@@ -433,7 +471,6 @@ def load_preset(name: str):
|
|
| 433 |
f.settings_dalle_resolution
|
| 434 |
)
|
| 435 |
|
| 436 |
-
|
| 437 |
# ---------- UI ----------
|
| 438 |
|
| 439 |
with gr.Blocks(title=APP_TITLE) as demo:
|
|
@@ -445,7 +482,7 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 445 |
preset = gr.Dropdown(choices=list(PRESETS.keys()), label="Presets")
|
| 446 |
load_btn = gr.Button("Load preset")
|
| 447 |
|
| 448 |
-
subject = gr.Textbox(label="Subject", placeholder="e.g., a
|
| 449 |
environment = gr.Textbox(label="Environment/Setting", placeholder="e.g., sunlit loft by a large window")
|
| 450 |
timeWeather = gr.Textbox(label="Time & Weather", placeholder="e.g., golden hour")
|
| 451 |
|
|
@@ -455,8 +492,8 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 455 |
aperture = gr.Textbox(label="Aperture", placeholder="e.g., f/1.8")
|
| 456 |
iso = gr.Textbox(label="ISO", placeholder="e.g., 200")
|
| 457 |
|
| 458 |
-
composition = gr.Textbox(label="Composition & Perspective", placeholder="e.g., eye‑level
|
| 459 |
-
lighting = gr.Textbox(label="Lighting", placeholder="e.g., soft window key at 45°, reflector fill,
|
| 460 |
microDetails = gr.Textbox(label="Materials & Micro‑detail", placeholder="e.g., skin pores, fabric weave, subtle scratches")
|
| 461 |
motionAtmosphere = gr.Textbox(label="Motion/Atmosphere", placeholder="e.g., slight motion blur, volumetric light, haze")
|
| 462 |
colorGrade = gr.Textbox(label="Color & Grade", placeholder="e.g., warm Portra‑like, soft contrast, high DR")
|
|
@@ -512,9 +549,10 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 512 |
)
|
| 513 |
|
| 514 |
with gr.Tab("Reverse (Image → Prompt)"):
|
| 515 |
-
gr.Markdown("Upload an image. The app will infer fields without identifying real people, then build prompts.")
|
| 516 |
image_in = gr.Image(type="pil", label="Upload image")
|
| 517 |
analyze_btn = gr.Button("Analyze & Generate")
|
|
|
|
| 518 |
fields_out = gr.JSON(label="Extracted fields (editable in Build tab if needed)")
|
| 519 |
universal_out_r = gr.Textbox(label="Universal prompt", lines=6)
|
| 520 |
mj_out_r = gr.Textbox(label="Midjourney prompt", lines=6)
|
|
@@ -525,21 +563,20 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 525 |
analyze_btn.click(
|
| 526 |
reverse_prompt,
|
| 527 |
inputs=[image_in],
|
| 528 |
-
outputs=[fields_out, universal_out_r, mj_out_r, sdxl_out_r, dalle_out_r, neg_out_r]
|
| 529 |
)
|
| 530 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
gr.Markdown(
|
| 532 |
"Tips\n"
|
| 533 |
-
"- For Midjourney, prepend 1–2 reference image URLs
|
| 534 |
"- For SDXL, use Refiner at 0.2–0.4 and upscale 1.5–2.0x for micro‑detail.\n"
|
| 535 |
-
"- DALL·E 3 responds best to concise
|
| 536 |
)
|
| 537 |
|
| 538 |
if __name__ == "__main__":
|
| 539 |
-
demo.launch()
|
| 540 |
-
gradio>=4.40.0
|
| 541 |
-
pillow
|
| 542 |
-
numpy
|
| 543 |
-
transformers>=4.42.0
|
| 544 |
-
torch>=2.3.0
|
| 545 |
-
opencv-python-headless
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Dict, Any, Optional, Tuple, List
|
|
|
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
from PIL import Image, ImageStat
|
|
|
|
| 26 |
"deformed hands, blurry, depth map artifacts, harsh HDR, unrealistic colors"
|
| 27 |
)
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
@dataclass
|
| 30 |
class CameraSpec:
|
| 31 |
cameraBody: str = ""
|
|
|
|
| 33 |
aperture: str = ""
|
| 34 |
iso: Optional[int] = None
|
| 35 |
|
|
|
|
| 36 |
@dataclass
|
| 37 |
class PromptFields:
|
| 38 |
subject: str = ""
|
|
|
|
| 48 |
aspectRatio: str = "4:5"
|
| 49 |
negatives: str = NEGATIVE_BASELINE
|
| 50 |
model: str = "sdxl" # "mj" | "sdxl" | "dalle"
|
| 51 |
+
# MJ
|
| 52 |
settings_mj_s: int = 100
|
| 53 |
settings_mj_chaos: int = 5
|
| 54 |
settings_mj_seed: int = 42
|
| 55 |
+
# SDXL
|
| 56 |
settings_sdxl_steps: int = 34
|
| 57 |
settings_sdxl_cfg: int = 5
|
| 58 |
settings_sdxl_sampler: str = "DPM++ SDE Karras"
|
| 59 |
settings_sdxl_resolution: str = "1024x1280"
|
| 60 |
settings_sdxl_refiner: float = 0.25
|
| 61 |
+
# DALL·E
|
| 62 |
settings_dalle_resolution: str = "1024x1024"
|
| 63 |
|
|
|
|
| 64 |
def realism_string(enabled: bool) -> str:
|
| 65 |
if not enabled:
|
| 66 |
return ""
|
|
|
|
| 70 |
"subtle chromatic aberration, vignette."
|
| 71 |
)
|
| 72 |
|
| 73 |
+
def safe_join(parts: List[str]) -> str:
|
|
|
|
| 74 |
return " ".join([p.strip() for p in parts if p and str(p).strip()]).replace(" ", " ").strip()
|
| 75 |
|
|
|
|
| 76 |
def build_universal(f: PromptFields) -> str:
|
| 77 |
+
s1 = f"Photo of {f.subject}" if f.subject else "Photo"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
if f.environment:
|
| 79 |
s1 += f" in/at {f.environment}"
|
| 80 |
if f.timeWeather:
|
| 81 |
s1 += f", {f.timeWeather}"
|
| 82 |
s1 += "."
|
| 83 |
|
|
|
|
| 84 |
cam_bits = []
|
| 85 |
if f.camera and f.camera.focalLengthMm:
|
| 86 |
cam_bits.append(f"{f.camera.focalLengthMm}mm lens")
|
|
|
|
| 88 |
cam_bits.append(f"at {f.camera.aperture}")
|
| 89 |
if f.camera and f.camera.iso:
|
| 90 |
cam_bits.append(f"ISO {f.camera.iso}")
|
| 91 |
+
s2 = "Shot with a " + ", ".join(cam_bits) + "." if cam_bits else ""
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
s3 = f"{f.composition}." if f.composition else ""
|
| 94 |
s4 = f"Lighting: {f.lighting}." if f.lighting else ""
|
|
|
|
| 97 |
s7 = f"Color & grade: {f.colorGrade}." if f.colorGrade else ""
|
| 98 |
s8 = realism_string(f.realismCues)
|
| 99 |
|
| 100 |
+
return safe_join([s1, s2, s3, s4, s5, s6, s7, s8])
|
|
|
|
|
|
|
| 101 |
|
| 102 |
def format_midjourney(universal: str, f: PromptFields) -> str:
|
| 103 |
return f"{universal} --style raw --ar {f.aspectRatio} --s {f.settings_mj_s} --chaos {f.settings_mj_chaos} --seed {f.settings_mj_seed}"
|
| 104 |
|
|
|
|
| 105 |
def format_sdxl(universal: str, f: PromptFields) -> Dict[str, Any]:
|
| 106 |
return {
|
| 107 |
"positive": universal,
|
|
|
|
| 116 |
}
|
| 117 |
}
|
| 118 |
|
|
|
|
| 119 |
def format_dalle(universal: str, f: PromptFields) -> Dict[str, Any]:
|
| 120 |
prose = f"A high‑resolution photograph. {universal}"
|
| 121 |
return {"prompt": prose, "resolution": f.settings_dalle_resolution}
|
| 122 |
|
|
|
|
| 123 |
def compose(
|
| 124 |
subject, environment, timeWeather,
|
| 125 |
cameraBody, focalLengthMm, aperture, iso,
|
|
|
|
| 157 |
settings_sdxl_refiner=float(sdxl_refiner) if str(sdxl_refiner).strip() else 0.25,
|
| 158 |
settings_dalle_resolution=dalle_resolution or "1024x1024",
|
| 159 |
)
|
|
|
|
| 160 |
universal = build_universal(f)
|
| 161 |
mj = format_midjourney(universal, f)
|
| 162 |
sdxl = format_sdxl(universal, f)
|
| 163 |
dalle = format_dalle(universal, f)
|
| 164 |
return universal, mj, sdxl, dalle, (f.negatives or NEGATIVE_BASELINE)
|
| 165 |
|
|
|
|
| 166 |
# ---------- Reverse prompt helpers ----------
|
| 167 |
|
| 168 |
+
CAPTIONER = None
|
| 169 |
def init_captioner():
|
| 170 |
if not HAS_TRANSFORMERS:
|
| 171 |
return None
|
| 172 |
try:
|
| 173 |
+
return pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
| 174 |
except Exception:
|
| 175 |
return None
|
|
|
|
| 176 |
CAPTIONER = init_captioner()
|
| 177 |
|
| 178 |
+
OBJDET = None
|
| 179 |
+
def init_objdet():
|
| 180 |
+
if not HAS_TRANSFORMERS:
|
| 181 |
+
return None
|
| 182 |
+
try:
|
| 183 |
+
return pipeline("object-detection", model="facebook/detr-resnet-50")
|
| 184 |
+
except Exception:
|
| 185 |
+
return None
|
| 186 |
+
OBJDET = init_objdet()
|
| 187 |
|
| 188 |
def download_haarcascade() -> Optional[str]:
|
| 189 |
if cv2 is None:
|
|
|
|
| 202 |
except Exception:
|
| 203 |
return None
|
| 204 |
|
|
|
|
| 205 |
def detect_faces(pil_img: Image.Image) -> int:
|
| 206 |
if cv2 is None:
|
| 207 |
return 0
|
|
|
|
| 217 |
except Exception:
|
| 218 |
return 0
|
| 219 |
|
|
|
|
| 220 |
def avg_brightness(pil_img: Image.Image) -> float:
|
| 221 |
stat = ImageStat.Stat(pil_img.convert("L"))
|
| 222 |
return float(stat.mean[0])
|
| 223 |
|
|
|
|
| 224 |
def nearest_aspect(w: int, h: int) -> str:
|
| 225 |
target = w / h
|
| 226 |
+
candidates = { "1:1": 1.0, "4:5": 0.8, "5:4": 1.25, "4:3": 1.333, "3:2": 1.5, "16:9": 1.777 }
|
| 227 |
+
return min(candidates.items(), key=lambda kv: abs(kv[1] - target))[0]
|
| 228 |
+
|
| 229 |
+
def _article(word: str) -> str:
|
| 230 |
+
return "an" if word and word[0].lower() in "aeiou" else "a"
|
| 231 |
+
|
| 232 |
+
def _label_to_phrase(label: str) -> str:
|
| 233 |
+
nice = {"tv": "television", "cell phone": "phone", "sports ball": "ball", "potted plant": "potted plant"}
|
| 234 |
+
word = nice.get(label, label)
|
| 235 |
+
return f"{_article(word)} {word}"
|
| 236 |
+
|
| 237 |
+
def _centrality_score(cx, cy, W, H):
|
| 238 |
+
dx = abs(cx - W/2) / (W/2)
|
| 239 |
+
dy = abs(cy - H/2) / (H/2)
|
| 240 |
+
dist = min(1.0, (dx*dx + dy*dy) ** 0.5)
|
| 241 |
+
return 1.0 - dist
|
| 242 |
+
|
| 243 |
+
def _detect_main_subject(img: Image.Image):
|
| 244 |
+
if OBJDET is None:
|
| 245 |
+
return None, []
|
| 246 |
+
try:
|
| 247 |
+
dets = OBJDET(img)
|
| 248 |
+
except Exception:
|
| 249 |
+
return None, []
|
| 250 |
+
if not dets:
|
| 251 |
+
return None, []
|
| 252 |
+
|
| 253 |
+
W, H = img.size
|
| 254 |
+
scored = []
|
| 255 |
+
for d in dets:
|
| 256 |
+
box = d.get("box", {})
|
| 257 |
+
xmin, ymin = box.get("xmin", 0), box.get("ymin", 0)
|
| 258 |
+
xmax, ymax = box.get("xmax", 0), box.get("ymax", 0)
|
| 259 |
+
w, h = max(1, xmax - xmin), max(1, ymax - ymin)
|
| 260 |
+
area = (w * h) / float(W * H)
|
| 261 |
+
cx, cy = xmin + w/2, ymin + h/2
|
| 262 |
+
central = _centrality_score(cx, cy, W, H)
|
| 263 |
+
conf = float(d.get("score", 0.0))
|
| 264 |
+
label = d.get("label", "")
|
| 265 |
+
score = conf * (0.6 * area + 0.4 * central)
|
| 266 |
+
scored.append({"label": label, "score": score})
|
| 267 |
+
|
| 268 |
+
scored.sort(key=lambda x: x["score"], reverse=True)
|
| 269 |
+
main_phrase = _label_to_phrase(scored[0]["label"])
|
| 270 |
+
|
| 271 |
+
suggestions, seen = [], set()
|
| 272 |
+
for s in scored:
|
| 273 |
+
p = _label_to_phrase(s["label"])
|
| 274 |
+
if p not in seen:
|
| 275 |
+
suggestions.append(p)
|
| 276 |
+
seen.add(p)
|
| 277 |
+
if len(suggestions) >= 5:
|
| 278 |
+
break
|
| 279 |
+
return main_phrase, suggestions
|
| 280 |
+
|
| 281 |
+
def _action_from_caption(caption: str) -> str:
|
| 282 |
+
c = (caption or "").lower()
|
| 283 |
+
for key in ["running", "sprinting", "walking", "standing", "jumping", "riding", "driving", "sitting"]:
|
| 284 |
+
if key in c:
|
| 285 |
+
return key
|
| 286 |
+
return ""
|
| 287 |
|
| 288 |
def extract_fields_from_image(img: Image.Image) -> Dict[str, Any]:
|
|
|
|
| 289 |
caption = ""
|
| 290 |
if CAPTIONER:
|
| 291 |
try:
|
|
|
|
| 294 |
caption = out[0].get("generated_text", "")
|
| 295 |
except Exception:
|
| 296 |
caption = ""
|
| 297 |
+
|
| 298 |
brightness = avg_brightness(img)
|
| 299 |
+
if brightness > 140:
|
| 300 |
+
timeWeather = "daylight"
|
| 301 |
+
elif 100 < brightness <= 140:
|
| 302 |
+
timeWeather = "overcast daylight"
|
| 303 |
+
else:
|
| 304 |
+
timeWeather = "night with ambient light"
|
| 305 |
+
|
| 306 |
+
subject_phrase, subject_suggestions = _detect_main_subject(img)
|
| 307 |
|
|
|
|
| 308 |
faces = detect_faces(img)
|
| 309 |
+
if not subject_phrase and faces > 0:
|
| 310 |
+
subject_phrase = "a person"
|
| 311 |
+
|
| 312 |
+
if not subject_phrase:
|
| 313 |
+
m = re.search(r"(a|an|the)\s+([^,.]+?)(?:\s+(on|in|at|by|with|near|amid|from)\b|[.,]|$)", (caption or "").lower())
|
| 314 |
+
subject_phrase = m.group(0).rstrip(",.") if m else ("a person" if faces > 0 else "a real-world subject")
|
| 315 |
+
|
| 316 |
+
if subject_phrase.startswith(("a person", "an person")):
|
| 317 |
+
act = _action_from_caption(caption)
|
| 318 |
+
if act and act not in subject_phrase:
|
| 319 |
+
subject_phrase = f"{subject_phrase} {act}"
|
| 320 |
+
|
| 321 |
+
if subject_phrase.startswith(("a person", "an person")):
|
| 322 |
+
focal = 35
|
| 323 |
+
aperture = "f/2.8"
|
| 324 |
iso = 200 if "day" in timeWeather else 800
|
| 325 |
+
composition = "eye‑level, rear three‑quarter or profile, leading lines, shallow DOF"
|
| 326 |
+
lighting = "soft natural light" if "day" in timeWeather else "mixed ambient light with practicals, soft shadows"
|
| 327 |
+
micro = "skin pores, fabric textures, scuffs, dust in the air"
|
| 328 |
+
motion = "slight motion blur on limbs if running" if "running" in subject_phrase else "no visible motion blur"
|
| 329 |
+
color_grade = "neutral, true-to-life colors, gentle contrast, high micro‑contrast"
|
| 330 |
else:
|
|
|
|
|
|
|
| 331 |
focal = 35
|
| 332 |
aperture = "f/2.8"
|
| 333 |
iso = 200 if "day" in timeWeather else 800
|
| 334 |
+
composition = "eye‑level, balanced framing, leading lines, shallow DOF"
|
| 335 |
+
lighting = "soft natural light" if "day" in timeWeather else "mixed ambient light with practicals, soft shadows"
|
| 336 |
micro = "texture of materials, dust, subtle scratches, specular highlights"
|
| 337 |
motion = "slight motion blur if present, volumetric light if applicable"
|
| 338 |
+
color_grade = "neutral, true-to-life colors, gentle contrast, high micro‑contrast"
|
| 339 |
|
| 340 |
w, h = img.size
|
| 341 |
aspect = nearest_aspect(w, h)
|
| 342 |
|
| 343 |
+
return {
|
| 344 |
+
"subject": subject_phrase,
|
| 345 |
+
"subjectCandidates": subject_suggestions,
|
| 346 |
"environment": "",
|
| 347 |
"timeWeather": timeWeather,
|
| 348 |
"camera": {
|
|
|
|
| 361 |
"negatives": NEGATIVE_BASELINE,
|
| 362 |
"model": "sdxl"
|
| 363 |
}
|
|
|
|
|
|
|
| 364 |
|
| 365 |
def reverse_prompt(image: Image.Image):
|
| 366 |
if image is None:
|
| 367 |
+
return {}, "", "", {"positive": "", "negative": "", "settings": {}}, {"prompt": "", "resolution": ""}, NEGATIVE_BASELINE, gr.update(choices=[], value=None)
|
| 368 |
|
| 369 |
fields = extract_fields_from_image(image)
|
|
|
|
| 370 |
f = PromptFields(
|
| 371 |
subject=fields["subject"],
|
| 372 |
environment=fields.get("environment", ""),
|
|
|
|
| 390 |
mj = format_midjourney(universal, f)
|
| 391 |
sdxl = format_sdxl(universal, f)
|
| 392 |
dalle = format_dalle(universal, f)
|
|
|
|
| 393 |
|
| 394 |
+
cands = fields.get("subjectCandidates", []) or []
|
| 395 |
+
dd = gr.update(choices=cands, value=(cands[0] if cands else None))
|
| 396 |
+
return fields, universal, mj, sdxl, dalle, (fields.get("negatives") or NEGATIVE_BASELINE), dd
|
| 397 |
|
| 398 |
# ---------- Presets ----------
|
| 399 |
|
|
|
|
| 456 |
)
|
| 457 |
}
|
| 458 |
|
|
|
|
| 459 |
def load_preset(name: str):
|
| 460 |
f = PRESETS.get(name)
|
| 461 |
if not f:
|
|
|
|
| 471 |
f.settings_dalle_resolution
|
| 472 |
)
|
| 473 |
|
|
|
|
| 474 |
# ---------- UI ----------
|
| 475 |
|
| 476 |
with gr.Blocks(title=APP_TITLE) as demo:
|
|
|
|
| 482 |
preset = gr.Dropdown(choices=list(PRESETS.keys()), label="Presets")
|
| 483 |
load_btn = gr.Button("Load preset")
|
| 484 |
|
| 485 |
+
subject = gr.Textbox(label="Subject", placeholder="e.g., a person running")
|
| 486 |
environment = gr.Textbox(label="Environment/Setting", placeholder="e.g., sunlit loft by a large window")
|
| 487 |
timeWeather = gr.Textbox(label="Time & Weather", placeholder="e.g., golden hour")
|
| 488 |
|
|
|
|
| 492 |
aperture = gr.Textbox(label="Aperture", placeholder="e.g., f/1.8")
|
| 493 |
iso = gr.Textbox(label="ISO", placeholder="e.g., 200")
|
| 494 |
|
| 495 |
+
composition = gr.Textbox(label="Composition & Perspective", placeholder="e.g., eye‑level, shallow DOF, rule of thirds")
|
| 496 |
+
lighting = gr.Textbox(label="Lighting", placeholder="e.g., soft window key at 45°, reflector fill, rim, 5400K")
|
| 497 |
microDetails = gr.Textbox(label="Materials & Micro‑detail", placeholder="e.g., skin pores, fabric weave, subtle scratches")
|
| 498 |
motionAtmosphere = gr.Textbox(label="Motion/Atmosphere", placeholder="e.g., slight motion blur, volumetric light, haze")
|
| 499 |
colorGrade = gr.Textbox(label="Color & Grade", placeholder="e.g., warm Portra‑like, soft contrast, high DR")
|
|
|
|
| 549 |
)
|
| 550 |
|
| 551 |
with gr.Tab("Reverse (Image → Prompt)"):
|
| 552 |
+
gr.Markdown("Upload an image. The app will infer fields without identifying real people, then build prompts. Use the detected-subject dropdown to set the main subject.")
|
| 553 |
image_in = gr.Image(type="pil", label="Upload image")
|
| 554 |
analyze_btn = gr.Button("Analyze & Generate")
|
| 555 |
+
subject_pick = gr.Dropdown(label="Detected subjects (pick one)", choices=[], value=None)
|
| 556 |
fields_out = gr.JSON(label="Extracted fields (editable in Build tab if needed)")
|
| 557 |
universal_out_r = gr.Textbox(label="Universal prompt", lines=6)
|
| 558 |
mj_out_r = gr.Textbox(label="Midjourney prompt", lines=6)
|
|
|
|
| 563 |
analyze_btn.click(
|
| 564 |
reverse_prompt,
|
| 565 |
inputs=[image_in],
|
| 566 |
+
outputs=[fields_out, universal_out_r, mj_out_r, sdxl_out_r, dalle_out_r, neg_out_r, subject_pick]
|
| 567 |
)
|
| 568 |
|
| 569 |
+
def use_picked_subject(picked):
|
| 570 |
+
return picked or ""
|
| 571 |
+
|
| 572 |
+
subject_pick.change(use_picked_subject, inputs=[subject_pick], outputs=[subject])
|
| 573 |
+
|
| 574 |
gr.Markdown(
|
| 575 |
"Tips\n"
|
| 576 |
+
"- For Midjourney, prepend 1–2 reference image URLs; keep --style raw.\n"
|
| 577 |
"- For SDXL, use Refiner at 0.2–0.4 and upscale 1.5–2.0x for micro‑detail.\n"
|
| 578 |
+
"- DALL·E 3 responds best to concise photographic prose with lens + lighting."
|
| 579 |
)
|
| 580 |
|
| 581 |
if __name__ == "__main__":
|
| 582 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|