trhacknon's picture
Duplicate from Tune-A-Video-library/Tune-A-Video-inference
c50a2e8
raw
history blame
7.08 kB
#!/usr/bin/env python
from __future__ import annotations
import os
import gradio as gr
from inference import InferencePipeline
class InferenceUtil:
def __init__(self, hf_token: str | None):
self.hf_token = hf_token
def load_model_info(self, model_id: str) -> tuple[str, str]:
try:
card = InferencePipeline.get_model_card(model_id, self.hf_token)
except Exception:
return '', ''
base_model = getattr(card.data, 'base_model', '')
training_prompt = getattr(card.data, 'training_prompt', '')
return base_model, training_prompt
TITLE = '# [Tune-A-Video](https://tuneavideo.github.io/)'
HF_TOKEN = os.getenv('HF_TOKEN')
pipe = InferencePipeline(HF_TOKEN)
app = InferenceUtil(HF_TOKEN)
with gr.Blocks(css='style.css') as demo:
gr.Markdown(TITLE)
with gr.Row():
with gr.Column():
with gr.Box():
model_id = gr.Dropdown(
label='Model ID',
choices=[
'Tune-A-Video-library/a-man-is-surfing',
'Tune-A-Video-library/mo-di-bear-guitar',
'Tune-A-Video-library/redshift-man-skiing',
],
value='Tune-A-Video-library/a-man-is-surfing')
with gr.Accordion(
label=
'Model info (Base model and prompt used for training)',
open=False):
with gr.Row():
base_model_used_for_training = gr.Text(
label='Base model', interactive=False)
prompt_used_for_training = gr.Text(
label='Training prompt', interactive=False)
prompt = gr.Textbox(label='Prompt',
max_lines=1,
placeholder='Example: "A panda is surfing"')
video_length = gr.Slider(label='Video length',
minimum=4,
maximum=12,
step=1,
value=8)
fps = gr.Slider(label='FPS',
minimum=1,
maximum=12,
step=1,
value=1)
seed = gr.Slider(label='Seed',
minimum=0,
maximum=100000,
step=1,
value=0)
with gr.Accordion('Other Parameters', open=False):
num_steps = gr.Slider(label='Number of Steps',
minimum=0,
maximum=100,
step=1,
value=50)
guidance_scale = gr.Slider(label='CFG Scale',
minimum=0,
maximum=50,
step=0.1,
value=7.5)
run_button = gr.Button('Generate')
gr.Markdown('''
- It takes a few minutes to download model first.
- Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
''')
with gr.Column():
result = gr.Video(label='Result')
with gr.Row():
examples = [
[
'Tune-A-Video-library/a-man-is-surfing',
'A panda is surfing.',
8,
1,
3,
50,
7.5,
],
[
'Tune-A-Video-library/a-man-is-surfing',
'A racoon is surfing, cartoon style.',
8,
1,
3,
50,
7.5,
],
[
'Tune-A-Video-library/mo-di-bear-guitar',
'a handsome prince is playing guitar, modern disney style.',
8,
1,
123,
50,
7.5,
],
[
'Tune-A-Video-library/mo-di-bear-guitar',
'a magical princess is playing guitar, modern disney style.',
8,
1,
123,
50,
7.5,
],
[
'Tune-A-Video-library/mo-di-bear-guitar',
'a rabbit is playing guitar, modern disney style.',
8,
1,
123,
50,
7.5,
],
[
'Tune-A-Video-library/mo-di-bear-guitar',
'a baby is playing guitar, modern disney style.',
8,
1,
123,
50,
7.5,
],
[
'Tune-A-Video-library/redshift-man-skiing',
'(redshift style) spider man is skiing.',
8,
1,
123,
50,
7.5,
],
[
'Tune-A-Video-library/redshift-man-skiing',
'(redshift style) black widow is skiing.',
8,
1,
123,
50,
7.5,
],
[
'Tune-A-Video-library/redshift-man-skiing',
'(redshift style) batman is skiing.',
8,
1,
123,
50,
7.5,
],
[
'Tune-A-Video-library/redshift-man-skiing',
'(redshift style) hulk is skiing.',
8,
1,
123,
50,
7.5,
],
]
gr.Examples(examples=examples,
inputs=[
model_id,
prompt,
video_length,
fps,
seed,
num_steps,
guidance_scale,
],
outputs=result,
fn=pipe.run,
cache_examples=os.getenv('SYSTEM') == 'spaces')
model_id.change(fn=app.load_model_info,
inputs=model_id,
outputs=[
base_model_used_for_training,
prompt_used_for_training,
])
inputs = [
model_id,
prompt,
video_length,
fps,
seed,
num_steps,
guidance_scale,
]
prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
demo.queue().launch()