|
import gradio as grad |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
def load_prompter(): |
|
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist") |
|
tokenizer = AutoTokenizer.from_pretrained("gpt2") |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.padding_side = "left" |
|
return prompter_model, tokenizer |
|
|
|
prompter_model, prompter_tokenizer = load_prompter() |
|
|
|
def generate(plain_text): |
|
input_ids = prompter_tokenizer(plain_text.strip()+" Rephrase:", return_tensors="pt").input_ids |
|
eos_id = prompter_tokenizer.eos_token_id |
|
outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=8, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0) |
|
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
res = output_texts[0].replace(plain_text+" Rephrase:", "").strip() |
|
return res |
|
|
|
txt = grad.Textbox(lines=1, label="Initial Text", placeholder="Input Prompt") |
|
out = grad.Textbox(lines=1, label="Optimized Prompt") |
|
examples = ["A rabbit is wearing a rainbow hat", "Several railroad tracks with one train passing by", "The roof is wet from the rain", "Cats dancing in a space club"] |
|
|
|
grad.Interface(fn=generate, |
|
inputs=txt, |
|
outputs=out, |
|
title="Promptist Demo by TRHACKNON", |
|
description="Promptist is a prompt interface for Stable Diffusion v1-4 (https://huggingface.co/CompVis/stable-diffusion-v1-4) that optimizes user input into model-preferred prompts. The online demo at Hugging Face Spaces is using CPU, so slow generation speed would be expected. Please load the model locally with GPUs for faster generation.", |
|
examples=examples, |
|
allow_flagging='never', |
|
cache_examples=False, |
|
theme="default").launch(enable_queue=True, debug=False, share=True) |