Spaces:
Sleeping
Sleeping
| import cv2 | |
| import gradio as gr | |
| import supervision as sv | |
| from ultralytics import YOLO | |
| from PIL import Image | |
| import torch | |
| import time | |
| import numpy as np | |
| import uuid | |
| import spaces | |
| ver=[0,0,0,0,0,0,6,7,8,9,10,11] | |
| ltr=["n","s","m","1","x"] | |
| tsk=["","-seg","-pose","-obb","-cls"] | |
| annotators = ["Box","RoundBox","BoxCorner","Color", | |
| "Circle","Dot","Triangle","Elipse","Halo", | |
| "PercentageBar","Mask","Polygon","Label", | |
| "RichLabel","Icon","Crop","Blur","Pixelate","HeatMap"] | |
| def model_select(v,l,t): | |
| modin=f"yolov{v}{l}{t}.pt" | |
| print(modin) | |
| global model | |
| model = YOLO(modin) | |
| def stream_object_detection(video,anno): | |
| SUBSAMPLE=2 | |
| cap = cv2.VideoCapture(video) | |
| # This means we will output mp4 videos | |
| video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore | |
| fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
| desired_fps = fps // SUBSAMPLE | |
| width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2 | |
| height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2 | |
| iterating, frame = cap.read() | |
| n_frames = 0 | |
| output_video_name = f"output_{uuid.uuid4()}.mp4" | |
| output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore | |
| while iterating: | |
| frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5) | |
| frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| result = model(Image.fromarray(frame))[0] | |
| detections = sv.Detections.from_ultralytics(result) | |
| #print(detections) | |
| box_annotator = eval(f'sv.{anno}Annotator()') | |
| #box_annotator = eval(f'sv.{annotators[0]}Annotator()') | |
| outp = box_annotator.annotate( | |
| scene=frame.copy(), | |
| detections=detections) | |
| #outp = draw_box(frame,detections) | |
| frame = np.array(outp) | |
| # Convert RGB to BGR | |
| frame = frame[:, :, ::-1].copy() | |
| output_video.write(frame) | |
| batch = [] | |
| output_video.release() | |
| yield output_video_name,detections | |
| output_video_name = f"output_{uuid.uuid4()}.mp4" | |
| output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore | |
| iterating, frame = cap.read() | |
| n_frames += 1 | |
| #css="body{background:aliceblue;}" | |
| with gr.Blocks(theme="Nymbo/Nymbo_Theme_5") as app: | |
| gr.HTML("<div style='font-size: 50px;font-weight: 800;'>SuperVision</div><div style='font-size: 30px;'>Video Object Detection</div><div>Github:<a href='https://github.com/roboflow/supervision' target='_blank'>https://github.com/roboflow/supervision</a></div>") | |
| #inp = gr.Image(type="filepath") | |
| with gr.Row(): | |
| with gr.Column(): | |
| inp = gr.Video(height=300) | |
| btn = gr.Button() | |
| with gr.Accordion("Controls",open=False): | |
| with gr.Group(): | |
| dd1=gr.Dropdown(label="Version",choices=ver[6:],value=ver[9],allow_custom_value=True) | |
| dd2=gr.Dropdown(label="Ltr", choices=ltr,value=ltr[1],allow_custom_value=True) | |
| dd3=gr.Dropdown(label="Task",choices=tsk,value=tsk[0],allow_custom_value=True) | |
| dd4=gr.Dropdown(label="Annotator",choices=annotators,value="Box") | |
| with gr.Column(): | |
| outp_v = gr.Video(label="Processed Video", streaming=True, autoplay=True,height=300) | |
| outp_j = gr.JSON() | |
| btn.click(stream_object_detection,[inp,dd4],[outp_v,outp_j]) | |
| app.load(model_select,[dd1,dd2,dd3],None) | |
| dd1.change(model_select,[dd1,dd2,dd3],None) | |
| dd2.change(model_select,[dd1,dd2,dd3],None) | |
| dd3.change(model_select,[dd1,dd2,dd3],None) | |
| app.queue().launch() | |