Spaces:
Sleeping
Sleeping
import cv2 | |
import gradio as gr | |
import supervision as sv | |
from ultralytics import YOLO | |
from PIL import Image | |
import torch | |
import time | |
import numpy as np | |
import uuid | |
import spaces | |
print(YOLO) | |
"""| YOLOv8 | `yolov8n.pt` `yolov8s.pt` `yolov8m.pt` `yolov8l.pt` `yolov8x.pt` … | |
| YOLOv8-seg | `yolov8n-seg.pt` `yolov8s-seg.pt` `yolov8m-seg.pt` `yolov8l-seg.pt` `yolov8x-seg.pt` … | |
| YOLOv8-pose | `yolov8n-pose.pt` `yolov8s-pose.pt` `yolov8m-pose.pt` `yolov8l-pose.pt` `yolov8x-pose.pt` `yolov8x-pose… | |
| YOLOv8-obb | `yolov8n-obb.pt` `yolov8s-obb.pt` `yolov8m-obb.pt` `yolov8l-obb.pt` `yolov8x-obb.pt` … | |
| YOLOv8-cls | `yolov8n-cls.pt` `yolov8s-cls.pt` `yolov8m-cls.pt` `yolov8l-cls.pt` `yolov8x-cls.pt` """ | |
ver=[6:11] | |
ltr=["n","s","m","1","x"] | |
tsk=["","seg","pose","obb","cls"] | |
#yolov8s.pt | |
modin=f"yolov{ver[2]}{ltr[1]}-{tsk[0]}.pt" | |
print(modin) | |
model = YOLO(modin) | |
def draw_box(image,det): | |
height, width, channels = image.shape | |
for ea in det.xyxy: | |
#bbox = convert_coords(ea, width, height) | |
#print(bbox) | |
start_point = ((int(ea[0]),int(ea[1]))) | |
end_point = ((int(ea[2]),int(ea[3]))) | |
color = (255, 0, 0) | |
thickness = 2 | |
image = cv2.rectangle(image, start_point, end_point, color, thickness) | |
return image | |
def stream_object_detection(video): | |
SUBSAMPLE=1 | |
cap = cv2.VideoCapture(video) | |
# This means we will output mp4 videos | |
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
desired_fps = fps // SUBSAMPLE | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2 | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2 | |
iterating, frame = cap.read() | |
n_frames = 0 | |
output_video_name = f"output_{uuid.uuid4()}.mp4" | |
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore | |
while iterating: | |
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5) | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
result = model(Image.fromarray(frame))[0] | |
detections = sv.Detections.from_ultralytics(result) | |
outp = draw_box(frame,detections) | |
frame = np.array(outp) | |
# Convert RGB to BGR | |
frame = frame[:, :, ::-1].copy() | |
output_video.write(frame) | |
batch = [] | |
output_video.release() | |
yield output_video_name | |
output_video_name = f"output_{uuid.uuid4()}.mp4" | |
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore | |
iterating, frame = cap.read() | |
n_frames += 1 | |
with gr.Blocks() as app: | |
gr.HTML("<div style='font-size: 50px;font-weight: 800;'>Supervision</div><div style='font-size: 30px;'>Video Object Detection</div><div>Github:<a href='https://github.com/roboflow/supervision' target='_blank'>https://github.com/roboflow/supervision</a></div>") | |
#inp = gr.Image(type="filepath") | |
with gr.Row(): | |
with gr.Column(): | |
inp = gr.Video() | |
btn = gr.Button() | |
outp_v = gr.Video(label="Processed Video", streaming=True, autoplay=True) | |
outp_j = gr.JSON() | |
btn.click(stream_object_detection,inp,[outp_v,outp_j]) | |
app.queue().launch() |