supervision / app.py
tree3po's picture
Update app.py
18d2d1f verified
raw
history blame
3.13 kB
import cv2
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from PIL import Image
import torch
import time
import numpy as np
import uuid
import spaces
ver=[0,0,0,0,0,0,6,7,8,9,10,11]
ltr=["n","s","m","1","x"]
tsk=["","-seg","-pose","-obb","-cls"]
#yolov8s.pt
modin=f"yolov{ver[11]}{ltr[1]}{tsk[0]}.pt"
print(modin)
model = YOLO(modin)
def draw_box(image,det):
height, width, channels = image.shape
for i,ea in enumerate(det.xyxy):
#bbox = convert_coords(ea, width, height)
#print(bbox)
start_point = ((int(ea[0]),int(ea[1])))
end_point = ((int(ea[2]),int(ea[3])))
color = (255, 0, 0)
thickness = 2
label = f'{det.data}'
font = cv2.FONT_HERSHEY_SIMPLEX # Choose a font
font_scale = 1
color = (0, 0, 255) # Blue color
thickness = 2
text_position = (int(ea[0]), int(ea[1]) + 10) # Adjust position as needed
image = cv2.rectangle(image, start_point, end_point, color, thickness)
cv2.putText(image, label, text_position, font, font_scale, color, thickness)
return image
@spaces.GPU
def stream_object_detection(video):
SUBSAMPLE=1
cap = cv2.VideoCapture(video)
# This means we will output mp4 videos
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
fps = int(cap.get(cv2.CAP_PROP_FPS))
desired_fps = fps // SUBSAMPLE
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
iterating, frame = cap.read()
n_frames = 0
output_video_name = f"output_{uuid.uuid4()}.mp4"
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
while iterating:
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result = model(Image.fromarray(frame))[0]
detections = sv.Detections.from_ultralytics(result)
print(detections)
outp = draw_box(frame,detections)
frame = np.array(outp)
# Convert RGB to BGR
frame = frame[:, :, ::-1].copy()
output_video.write(frame)
batch = []
output_video.release()
yield output_video_name,detections
output_video_name = f"output_{uuid.uuid4()}.mp4"
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
iterating, frame = cap.read()
n_frames += 1
with gr.Blocks() as app:
gr.HTML("<div style='font-size: 50px;font-weight: 800;'>Supervision</div><div style='font-size: 30px;'>Video Object Detection</div><div>Github:<a href='https://github.com/roboflow/supervision' target='_blank'>https://github.com/roboflow/supervision</a></div>")
#inp = gr.Image(type="filepath")
with gr.Row():
with gr.Column():
inp = gr.Video()
btn = gr.Button()
outp_v = gr.Video(label="Processed Video", streaming=True, autoplay=True)
outp_j = gr.JSON()
btn.click(stream_object_detection,inp,[outp_v,outp_j])
app.queue().launch()