Spaces:
Runtime error
Runtime error
""" | |
Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py | |
""" | |
from typing import Optional | |
import math | |
import torch | |
from torch import nn | |
# pylint: disable=unused-import | |
from diffusers.models.embeddings import TimestepEmbedding | |
class Timesteps(nn.Module): | |
def __init__( | |
self, | |
num_channels: int, | |
flip_sin_to_cos: bool = True, | |
downscale_freq_shift: float = 0, | |
): | |
super().__init__() | |
self.num_channels = num_channels | |
self.flip_sin_to_cos = flip_sin_to_cos | |
self.downscale_freq_shift = downscale_freq_shift | |
def forward(self, timesteps): | |
t_emb = get_timestep_embedding( | |
timesteps, | |
self.num_channels, | |
flip_sin_to_cos=self.flip_sin_to_cos, | |
downscale_freq_shift=self.downscale_freq_shift, | |
) | |
return t_emb | |
class Positions2d(nn.Module): | |
def __init__( | |
self, | |
num_channels: int, | |
flip_sin_to_cos: bool = True, | |
downscale_freq_shift: float = 0, | |
): | |
super().__init__() | |
self.num_channels = num_channels | |
self.flip_sin_to_cos = flip_sin_to_cos | |
self.downscale_freq_shift = downscale_freq_shift | |
def forward(self, grid): | |
h_emb = get_timestep_embedding( | |
grid[0], | |
self.num_channels // 2, | |
flip_sin_to_cos=self.flip_sin_to_cos, | |
downscale_freq_shift=self.downscale_freq_shift, | |
) | |
w_emb = get_timestep_embedding( | |
grid[1], | |
self.num_channels // 2, | |
flip_sin_to_cos=self.flip_sin_to_cos, | |
downscale_freq_shift=self.downscale_freq_shift, | |
) | |
emb = torch.cat((h_emb, w_emb), dim=-1) | |
return emb | |
def get_timestep_embedding( | |
timesteps: torch.Tensor, | |
embedding_dim: int, | |
flip_sin_to_cos: bool = False, | |
downscale_freq_shift: float = 1, | |
scale: float = 1, | |
max_period: int = 10000, | |
): | |
""" | |
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D or 2-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the | |
embeddings. :return: an [N x dim] or [N x M x dim] Tensor of positional embeddings. | |
""" | |
if len(timesteps.shape) not in [1, 2]: | |
raise ValueError("Timesteps should be a 1D or 2D tensor") | |
half_dim = embedding_dim // 2 | |
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) | |
exponent = exponent / (half_dim - downscale_freq_shift) | |
emb = torch.exp(exponent) | |
emb = timesteps[..., None].float() * emb | |
# scale embeddings | |
emb = scale * emb | |
# concat sine and cosine embeddings | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) | |
# flip sine and cosine embeddings | |
if flip_sin_to_cos: | |
emb = torch.cat([emb[..., half_dim:], emb[..., :half_dim]], dim=-1) | |
# zero pad | |
if embedding_dim % 2 == 1: | |
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
return emb | |