Spaces:
Running
Running
import gradio as gr | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain.chains import create_retrieval_chain | |
from langchain_community.chat_models.gigachat import GigaChat | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
import os | |
#import telebot | |
def get_yt_links(contexts): | |
html = ''' | |
<iframe width="100%" height="200" src="{}?start={}" \ | |
title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; \ | |
encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" \ | |
allowfullscreen></iframe> | |
''' | |
yt_htmls = [] | |
for context in contexts: | |
link = context.metadata['link'] | |
start = context.metadata['time'] | |
yt_htmls.append(html.format(link, start)) | |
return yt_htmls | |
'''def resp2msg(resp): | |
req = resp['input'] | |
ans = resp['answer'] | |
return req + '\n' + ans''' | |
def get_context(contexts): | |
txt_context = ''' | |
Фрагмент 1: {} | |
Фрагмент 2: {} | |
Фрагмент 3: {} | |
'''.format( | |
contexts[0].page_content, | |
contexts[1].page_content, | |
contexts[2].page_content, | |
) | |
return txt_context | |
def process_input(text): | |
response = retrieval_chain.invoke({"input": text}) | |
#bot.send_message(user_id, resp2msg(response)) | |
youtube_links = get_yt_links(response['context']) | |
context = get_context(response['context']) | |
return response['answer'], context, youtube_links[0], youtube_links[1], youtube_links[2] | |
giga = os.getenv('GIGA') | |
#token = os.getenv('BOT') | |
#user_id = os.getenv('CREATOR') | |
#bot = telebot.TeleBot(token) | |
model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" | |
model_kwargs = {'device': 'cpu'} | |
encode_kwargs = {'normalize_embeddings': False} | |
embedding = HuggingFaceEmbeddings(model_name=model_name, | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs) | |
vector_db = FAISS.load_local('faiss_index', | |
embeddings=embedding, | |
allow_dangerous_deserialization=True) | |
llm = GigaChat(credentials=giga, verify_ssl_certs=False, profanity_check=False) | |
prompt = ChatPromptTemplate.from_template('''Ответь на вопрос пользователя. \ | |
Используй при этом только информацию из контекста. Если в контексте нет \ | |
информации для ответа, сообщи об этом пользователю. | |
Контекст: {context} | |
Вопрос: {input} | |
Ответ:''' | |
) | |
embedding_retriever = vector_db.as_retriever(search_kwargs={"k": 3}) | |
document_chain = create_stuff_documents_chain( | |
llm=llm, | |
prompt=prompt | |
) | |
retrieval_chain = create_retrieval_chain(embedding_retriever, document_chain) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
text_input = gr.Textbox(label="Введите запрос") | |
submit_btn = gr.Button("Отправить запрос") | |
text_output = gr.Textbox(label="Ответ", interactive=False) | |
text_context = gr.Textbox(label="Контекст", interactive=False) | |
with gr.Column(): | |
youtube_video1 = gr.HTML() | |
youtube_video2 = gr.HTML() | |
youtube_video3 = gr.HTML() | |
submit_btn.click(process_input, text_input, [text_output, text_context, youtube_video1, youtube_video2, youtube_video3]) | |
demo.launch() |