Spaces:
Runtime error
Runtime error
Commit
·
164a632
1
Parent(s):
842269e
Create accelerations.py
Browse files- accelerations.py +151 -0
accelerations.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def smooth_derivative(t_in, v_in):
|
| 7 |
+
#
|
| 8 |
+
# Function to compute a smooth estimation of a derivative.
|
| 9 |
+
# [REF: http://holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/]
|
| 10 |
+
#
|
| 11 |
+
|
| 12 |
+
# Configuration
|
| 13 |
+
#
|
| 14 |
+
# Derivative method: two options: 'smooth' or 'centered'. Smooth is more conservative
|
| 15 |
+
# but helps to supress the very noisy signals. 'centered' is more agressive but more noisy
|
| 16 |
+
method = "smooth"
|
| 17 |
+
|
| 18 |
+
t = t_in.copy()
|
| 19 |
+
v = v_in.copy()
|
| 20 |
+
|
| 21 |
+
# (0) Prepare inputs
|
| 22 |
+
|
| 23 |
+
# (0.1) Time needs to be transformed to seconds
|
| 24 |
+
try:
|
| 25 |
+
for i in range(0, t.size):
|
| 26 |
+
t.iloc[i] = t.iloc[i].total_seconds()
|
| 27 |
+
except:
|
| 28 |
+
pass
|
| 29 |
+
|
| 30 |
+
t = np.array(t)
|
| 31 |
+
v = np.array(v)
|
| 32 |
+
|
| 33 |
+
# (0.1) Assert they have the same size
|
| 34 |
+
assert t.size == v.size
|
| 35 |
+
|
| 36 |
+
# (0.2) Initialize output
|
| 37 |
+
dvdt = np.zeros(t.size)
|
| 38 |
+
|
| 39 |
+
# (1) Manually compute points out of the stencil
|
| 40 |
+
|
| 41 |
+
# (1.1) First point
|
| 42 |
+
dvdt[0] = (v[1] - v[0]) / (t[1] - t[0])
|
| 43 |
+
|
| 44 |
+
# (1.2) Second point
|
| 45 |
+
dvdt[1] = (v[2] - v[0]) / (t[2] - t[0])
|
| 46 |
+
|
| 47 |
+
# (1.3) Third point
|
| 48 |
+
dvdt[2] = (v[3] - v[1]) / (t[3] - t[1])
|
| 49 |
+
|
| 50 |
+
# (1.4) Last points
|
| 51 |
+
n = t.size
|
| 52 |
+
dvdt[n - 1] = (v[n - 1] - v[n - 2]) / (t[n - 1] - t[n - 2])
|
| 53 |
+
dvdt[n - 2] = (v[n - 1] - v[n - 3]) / (t[n - 1] - t[n - 3])
|
| 54 |
+
dvdt[n - 3] = (v[n - 2] - v[n - 4]) / (t[n - 2] - t[n - 4])
|
| 55 |
+
|
| 56 |
+
# (2) Compute the rest of the points
|
| 57 |
+
if method == "smooth":
|
| 58 |
+
c = [5.0 / 32.0, 4.0 / 32.0, 1.0 / 32.0]
|
| 59 |
+
for i in range(3, t.size - 3):
|
| 60 |
+
for j in range(1, 4):
|
| 61 |
+
if (t[i + j] - t[i - j]) == 0:
|
| 62 |
+
dvdt[i] += 0
|
| 63 |
+
else:
|
| 64 |
+
dvdt[i] += (
|
| 65 |
+
2 * j * c[j - 1] * (v[i + j] - v[i - j]) / (t[i + j] - t[i - j])
|
| 66 |
+
)
|
| 67 |
+
elif method == "centered":
|
| 68 |
+
for i in range(3, t.size - 2):
|
| 69 |
+
for j in range(1, 4):
|
| 70 |
+
if (t[i + j] - t[i - j]) == 0:
|
| 71 |
+
dvdt[i] += 0
|
| 72 |
+
else:
|
| 73 |
+
|
| 74 |
+
dvdt[i] = (v[i + 1] - v[i - 1]) / (t[i + 1] - t[i - 1])
|
| 75 |
+
|
| 76 |
+
return dvdt
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def truncated_remainder(dividend, divisor):
|
| 80 |
+
divided_number = dividend / divisor
|
| 81 |
+
divided_number = (
|
| 82 |
+
-int(-divided_number) if divided_number < 0 else int(divided_number)
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
remainder = dividend - divisor * divided_number
|
| 86 |
+
|
| 87 |
+
return remainder
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def transform_to_pipi(input_angle):
|
| 91 |
+
pi = math.pi
|
| 92 |
+
revolutions = int((input_angle + np.sign(input_angle) * pi) / (2 * pi))
|
| 93 |
+
|
| 94 |
+
p1 = truncated_remainder(input_angle + np.sign(input_angle) * pi, 2 * pi)
|
| 95 |
+
p2 = (
|
| 96 |
+
np.sign(
|
| 97 |
+
np.sign(input_angle)
|
| 98 |
+
+ 2
|
| 99 |
+
* (
|
| 100 |
+
np.sign(
|
| 101 |
+
math.fabs(
|
| 102 |
+
(truncated_remainder(input_angle + pi, 2 * pi)) / (2 * pi)
|
| 103 |
+
)
|
| 104 |
+
)
|
| 105 |
+
- 1
|
| 106 |
+
)
|
| 107 |
+
)
|
| 108 |
+
) * pi
|
| 109 |
+
|
| 110 |
+
output_angle = p1 - p2
|
| 111 |
+
|
| 112 |
+
return output_angle, revolutions
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def remove_acceleration_outliers(acc):
|
| 116 |
+
acc_threshold_g = 7.5
|
| 117 |
+
if math.fabs(acc[0]) > acc_threshold_g:
|
| 118 |
+
acc[0] = 0.0
|
| 119 |
+
|
| 120 |
+
for i in range(1, acc.size - 1):
|
| 121 |
+
if math.fabs(acc[i]) > acc_threshold_g:
|
| 122 |
+
acc[i] = acc[i - 1]
|
| 123 |
+
|
| 124 |
+
if math.fabs(acc[-1]) > acc_threshold_g:
|
| 125 |
+
acc[-1] = acc[-2]
|
| 126 |
+
|
| 127 |
+
return acc
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def compute_accelerations(telemetry):
|
| 131 |
+
v = np.array(telemetry["Speed"]) / 3.6
|
| 132 |
+
lon_acc = smooth_derivative(telemetry["Time"], v) / 9.81
|
| 133 |
+
|
| 134 |
+
dx = smooth_derivative(telemetry["Distance"], telemetry["X"])
|
| 135 |
+
dy = smooth_derivative(telemetry["Distance"], telemetry["Y"])
|
| 136 |
+
|
| 137 |
+
theta = np.zeros(dx.size)
|
| 138 |
+
theta[0] = math.atan2(dy[0], dx[0])
|
| 139 |
+
for i in range(0, dx.size):
|
| 140 |
+
theta[i] = (
|
| 141 |
+
theta[i - 1] + transform_to_pipi(math.atan2(dy[i], dx[i]) - theta[i - 1])[0]
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
kappa = smooth_derivative(telemetry["Distance"], theta)
|
| 145 |
+
lat_acc = v * v * kappa / 9.81
|
| 146 |
+
|
| 147 |
+
# Remove outliers
|
| 148 |
+
lon_acc = remove_acceleration_outliers(lon_acc)
|
| 149 |
+
lat_acc = remove_acceleration_outliers(lat_acc)
|
| 150 |
+
|
| 151 |
+
return np.round(lon_acc, 2), np.round(lat_acc, 2)
|