api / main.py
tracinginsights's picture
Update main.py
ef887b5
raw
history blame
14.2 kB
import datetime
import os
import streamlit as st
import numpy as np
import math
import fastf1
import pandas as pd
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse, HTMLResponse
from pydantic import BaseModel
import available_data
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
import math
import numpy as np
def smooth_derivative(t_in, v_in):
#
# Function to compute a smooth estimation of a derivative.
# [REF: http://holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/]
#
# Configuration
#
# Derivative method: two options: 'smooth' or 'centered'. Smooth is more conservative
# but helps to supress the very noisy signals. 'centered' is more agressive but more noisy
method = "smooth"
t = t_in.copy()
v = v_in.copy()
# (0) Prepare inputs
# (0.1) Time needs to be transformed to seconds
try:
for i in range(0, t.size):
t.iloc[i] = t.iloc[i].total_seconds()
except:
pass
t = np.array(t)
v = np.array(v)
# (0.1) Assert they have the same size
assert t.size == v.size
# (0.2) Initialize output
dvdt = np.zeros(t.size)
# (1) Manually compute points out of the stencil
# (1.1) First point
dvdt[0] = (v[1] - v[0]) / (t[1] - t[0])
# (1.2) Second point
dvdt[1] = (v[2] - v[0]) / (t[2] - t[0])
# (1.3) Third point
dvdt[2] = (v[3] - v[1]) / (t[3] - t[1])
# (1.4) Last points
n = t.size
dvdt[n - 1] = (v[n - 1] - v[n - 2]) / (t[n - 1] - t[n - 2])
dvdt[n - 2] = (v[n - 1] - v[n - 3]) / (t[n - 1] - t[n - 3])
dvdt[n - 3] = (v[n - 2] - v[n - 4]) / (t[n - 2] - t[n - 4])
# (2) Compute the rest of the points
if method == "smooth":
c = [5.0 / 32.0, 4.0 / 32.0, 1.0 / 32.0]
for i in range(3, t.size - 3):
for j in range(1, 4):
dvdt[i] += (
2 * j * c[j - 1] * (v[i + j] - v[i - j]) /
(t[i + j] - t[i - j])
)
elif method == "centered":
for i in range(3, t.size - 2):
for j in range(1, 4):
dvdt[i] = (v[i + 1] - v[i - 1]) / (t[i + 1] - t[i - 1])
return dvdt
def truncated_remainder(dividend, divisor):
divided_number = dividend / divisor
divided_number = (
-int(-divided_number) if divided_number < 0 else int(divided_number)
)
remainder = dividend - divisor * divided_number
return remainder
def transform_to_pipi(input_angle):
pi = math.pi
revolutions = int((input_angle + np.sign(input_angle) * pi) / (2 * pi))
p1 = truncated_remainder(input_angle + np.sign(input_angle) * pi, 2 * pi)
p2 = (
np.sign(
np.sign(input_angle)
+ 2
* (
np.sign(
math.fabs(
(truncated_remainder(input_angle + pi, 2 * pi)) / (2 * pi)
)
)
- 1
)
)
) * pi
output_angle = p1 - p2
return output_angle, revolutions
def remove_acceleration_outliers(acc):
acc_threshold_g = 7.5
if math.fabs(acc[0]) > acc_threshold_g:
acc[0] = 0.0
for i in range(1, acc.size - 1):
if math.fabs(acc[i]) > acc_threshold_g:
acc[i] = acc[i - 1]
if math.fabs(acc[-1]) > acc_threshold_g:
acc[-1] = acc[-2]
return acc
def compute_accelerations(telemetry):
v = np.array(telemetry["Speed"]) / 3.6
lon_acc = smooth_derivative(telemetry["Time"], v) / 9.81
dx = smooth_derivative(telemetry["Distance"], telemetry["X"])
dy = smooth_derivative(telemetry["Distance"], telemetry["Y"])
theta = np.zeros(dx.size)
theta[0] = math.atan2(dy[0], dx[0])
for i in range(0, dx.size):
theta[i] = (
theta[i - 1] +
transform_to_pipi(math.atan2(dy[i], dx[i]) - theta[i - 1])[0]
)
kappa = smooth_derivative(telemetry["Distance"], theta)
lat_acc = v * v * kappa / 9.81
# Remove outliers
lon_acc = remove_acceleration_outliers(lon_acc)
lat_acc = remove_acceleration_outliers(lat_acc)
return np.round(lon_acc,2), np.round(lat_acc,2)
@st.cache_data
@app.get("/wdc", response_model=None)
def driver_standings() -> any:
YEAR = 2023 #datetime.datetime.now().year
df = pd.DataFrame(
pd.read_html(f"https://www.formula1.com/en/results.html/{YEAR}/drivers.html")[0]
)
df = df[["Driver", "PTS", "Car"]]
# reverse the order
df = df.sort_values(by="PTS", ascending=True)
# in Driver column only keep the last 3 characters
df["Driver"] = df["Driver"].str[:-5]
# add colors to the dataframe
car_colors = available_data.team_colors(YEAR)
df["fill"] = df["Car"].map(car_colors)
# remove rows where points is 0
df = df[df["PTS"] != 0]
df.reset_index(inplace=True, drop=True)
df.rename(columns={"PTS": "Points"}, inplace=True)
return {"WDC":df.to_dict("records")}
@st.cache_data
@app.get("/", response_model=None)
async def root():
return HTMLResponse(
content="""<iframe src="https://tracinginsights-f1-analysis.hf.space" frameborder="0" style="width:100%; height:100%;" scrolling="yes" allowfullscreen:"yes"></iframe>""",
status_code=200)
@st.cache_data
@app.get("/years", response_model=None)
def years_available() -> any:
# make a list from 2018 to current year
current_year = datetime.datetime.now().year
years = list(range(2018, current_year+1))
# reverse the list to get the latest year first
years.reverse()
years = [{"label": str(year), "value": year} for year in years]
return {"years": years}
# format for events {"events":[{"label":"Saudi Arabian Grand Prix","value":2},{"label":"Bahrain Grand Prix","value":1},{"label":"Pre-Season Testing","value":"t1"}]}
@st.cache_data
@app.get("/{year}", response_model=None)
def events_available(year: int) -> any:
# get events available for a given year
data = available_data.LatestData(year)
events = data.get_events()
events = [{"label": event, "value": event} for i, event in enumerate(events)]
events.reverse()
return {"events": events}
# format for sessions {"sessions":[{"label":"FP1","value":"FP1"},{"label":"FP2","value":"FP2"},{"label":"FP3","value":"FP3"},{"label":"Qualifying","value":"Q"},{"label":"Race","value":"R"}]}
@st.cache_data
@app.get("/{year}/{event}", response_model=None)
def sessions_available(year: int, event: str | int) -> any:
# get sessions available for a given year and event
data = available_data.LatestData(year)
sessions = data.get_sessions(event)
sessions = [{"label": session, "value": session} for session in sessions]
return {"sessions": sessions}
# format for drivers {"drivers":[{"color":"#fff500","label":"RIC","value":"RIC"},{"color":"#ff8700","label":"NOR","value":"NOR"},{"color":"#c00000","label":"VET","value":"VET"},{"color":"#0082fa","label":"LAT","value":"LAT"},{"color":"#787878","label":"GRO","value":"GRO"},{"color":"#ffffff","label":"GAS","value":"GAS"},{"color":"#f596c8","label":"STR","value":"STR"},{"color":"#787878","label":"MAG","value":"MAG"},{"color":"#0600ef","label":"ALB","value":"ALB"},{"color":"#ffffff","label":"KVY","value":"KVY"},{"color":"#fff500","label":"OCO","value":"OCO"},{"color":"#0600ef","label":"VER","value":"VER"},{"color":"#00d2be","label":"HAM","value":"HAM"},{"color":"#ff8700","label":"SAI","value":"SAI"},{"color":"#00d2be","label":"BOT","value":"BOT"},{"color":"#960000","label":"GIO","value":"GIO"}]}
@st.cache_data
@app.get("/{year}/{event}/{session}", response_model=None)
def session_drivers(year: int, event: str | int, session: str) -> any:
# get drivers available for a given year, event and session
f1session = fastf1.get_session(year, event, session)
api_path = f1session.api_path
drivers_raw = fastf1.api.driver_info(api_path)
drivers = []
for driver in drivers_raw.items():
drivers.append({
"color": available_data.team_colors(year)[driver[1]['TeamName']],
"label": driver[1]['Tla'],
"value": driver[1]['Tla']})
return {"drivers": drivers}
# format for chartData {"chartData":[{"lapnumber":1},{
# "VER":91.564,
# "VER_compound":"SOFT",
# "VER_compound_color":"#FF5733",
# "lapnumber":2
# },{"lapnumber":3},{"VER":90.494,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":4},{"lapnumber":5},{"VER":90.062,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":6},{"lapnumber":7},{"VER":89.815,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":8},{"VER":105.248,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":9},{"lapnumber":10},{"VER":89.79,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":11},{"VER":145.101,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":12},{"lapnumber":13},{"VER":89.662,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":14},{"lapnumber":15},{"VER":89.617,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":16},{"lapnumber":17},{"VER":140.717,"VER_compound":"SOFT","VER_compound_color":"#FF5733","lapnumber":18}]}
@st.cache_data
@app.get("/{year}/{event}/{session}/{driver}", response_model=None)
def laps_data(year: int, event: str | int, session: str, driver: str) -> any:
# get drivers available for a given year, event and session
f1session = fastf1.get_session(year, event, session)
f1session.load(telemetry=False, weather=False, messages=False)
laps = f1session.laps
team_colors = available_data.team_colors(year)
# add team_colors dict to laps on Team column
drivers = laps.Driver.unique()
# for each driver in drivers, get the Team column from laps and get the color from team_colors dict
drivers = [{"color": team_colors[laps[laps.Driver ==
driver].Team.iloc[0]], "label": driver, "value": driver} for driver in drivers]
driver_laps = laps.pick_driver(driver)
driver_laps['LapTime'] = driver_laps['LapTime'].dt.total_seconds()
compound_colors = {
"SOFT": "#FF0000",
"MEDIUM": "#FFFF00",
"HARD": "#FFFFFF",
"INTERMEDIATE": "#00FF00",
"WET": "#088cd0",
}
driver_laps_data = []
for _, row in driver_laps.iterrows():
if row['LapTime'] > 0:
lap = {f"{driver}": row['LapTime'],
f"{driver}_compound": row['Compound'],
f"{driver}_compound_color": compound_colors[row['Compound']],
"lapnumber": row['LapNumber']}
else:
lap = {"lapnumber": row['LapNumber']}
driver_laps_data.append(lap)
return {"chartData": driver_laps_data}
@st.cache_data
@app.get("/{year}/{event}/{session}/{driver}/{lap_number}", response_model=None)
def telemetry_data(year: int, event: str | int, session: str, driver: str, lap_number: int) -> any:
f1session = fastf1.get_session(year, event, session)
f1session.load(telemetry=True, weather=False, messages=False)
laps = f1session.laps
driver_laps = laps.pick_driver(driver)
driver_laps['LapTime'] = driver_laps['LapTime'].dt.total_seconds()
# get the telemetry for lap_number
selected_lap = driver_laps[driver_laps.LapNumber == lap_number]
telemetry = selected_lap.get_telemetry()
lon_acc, lat_acc = compute_accelerations(telemetry)
telemetry["lon_acc"] = lon_acc
telemetry["lat_acc"] = lat_acc
telemetry['Time'] = telemetry['Time'].dt.total_seconds()
laptime = selected_lap.LapTime.values[0]
data_key = f"{driver} - Lap {int(lap_number)} - {year} {session} [{int(laptime//60)}:{laptime%60}]"
telemetry['DRS'] = telemetry['DRS'].apply(lambda x: 1 if x in [10,12,14] else 0)
brake_tel = []
drs_tel = []
gear_tel = []
rpm_tel = []
speed_tel = []
throttle_tel = []
time_tel = []
track_map = []
lon_acc_tel = []
lat_acc_tel = []
for _, row in telemetry.iterrows():
brake = {"x": row['Distance'],
"y": row['Brake'],
}
brake_tel.append(brake)
drs = {"x": row['Distance'],
"y": row['DRS'],
}
drs_tel.append(drs)
gear = {"x": row['Distance'],
"y": row['nGear'],
}
gear_tel.append(gear)
rpm = {"x": row['Distance'],
"y": row['RPM'],
}
rpm_tel.append(rpm)
speed = {"x": row['Distance'],
"y": row['Speed'],
}
speed_tel.append(speed)
throttle = {"x": row['Distance'],
"y": row['Throttle'],
}
throttle_tel.append(throttle)
time = {"x": row['Distance'],
"y": row['Time'],
}
time_tel.append(time)
lon_acc = {"x": row['Distance'],
"y": row['lon_acc'],
}
lon_acc_tel.append(lon_acc)
lat_acc = {"x": row['Distance'],
"y": row['lat_acc'],
}
lat_acc_tel.append(lat_acc)
track = {"x": row['X'],
"y": row['Y'],
}
track_map.append(track)
telemetry_data = {
"telemetryData":{
"brake": brake_tel,
"dataKey": data_key,
"drs": drs_tel,
"gear": gear_tel,
"rpm": rpm_tel,
"speed": speed_tel,
"throttle": throttle_tel,
"time": time_tel,
"lon_acc": lon_acc_tel,
"lat_acc": lat_acc_tel,
"trackMap": track_map,
}
}
return telemetry_data