Spaces:
Runtime error
Runtime error
Use dpt-large
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from PIL import ImageDraw
|
|
4 |
import torch
|
5 |
|
6 |
detector = pipeline("zero-shot-object-detection", model="google/owlvit-base-patch32")
|
7 |
-
depth_estimator = pipeline("depth-estimation", model="
|
8 |
|
9 |
def visualize_preds(image, predictions):
|
10 |
new_image = image.copy()
|
@@ -23,21 +23,18 @@ def visualize_preds(image, predictions):
|
|
23 |
def compute_depth(image, preds):
|
24 |
|
25 |
output = depth_estimator(image)
|
26 |
-
print(output)
|
27 |
prediction = torch.nn.functional.interpolate(
|
28 |
output["predicted_depth"].unsqueeze(1),
|
29 |
size=image.size[::-1],
|
30 |
mode="bicubic",
|
31 |
align_corners=False,
|
32 |
-
).squeeze().numpy()
|
33 |
-
|
34 |
-
print(prediction.shape)
|
35 |
-
|
36 |
output = []
|
37 |
|
38 |
for pred in preds:
|
39 |
-
x = (pred["box"]["xmax"]
|
40 |
-
y = (pred["box"]["ymax"]
|
41 |
output.append({
|
42 |
"class": pred["label"],
|
43 |
"distance": float(prediction[y][x])
|
|
|
4 |
import torch
|
5 |
|
6 |
detector = pipeline("zero-shot-object-detection", model="google/owlvit-base-patch32")
|
7 |
+
depth_estimator = pipeline("depth-estimation", model="Intel/dpt-large")
|
8 |
|
9 |
def visualize_preds(image, predictions):
|
10 |
new_image = image.copy()
|
|
|
23 |
def compute_depth(image, preds):
|
24 |
|
25 |
output = depth_estimator(image)
|
|
|
26 |
prediction = torch.nn.functional.interpolate(
|
27 |
output["predicted_depth"].unsqueeze(1),
|
28 |
size=image.size[::-1],
|
29 |
mode="bicubic",
|
30 |
align_corners=False,
|
31 |
+
).squeeze().cpu().numpy()
|
32 |
+
|
|
|
|
|
33 |
output = []
|
34 |
|
35 |
for pred in preds:
|
36 |
+
x = (pred["box"]["xmax"] + pred["box"]["xmin"]) // 2
|
37 |
+
y = (pred["box"]["ymax"] + pred["box"]["ymin"]) // 2
|
38 |
output.append({
|
39 |
"class": pred["label"],
|
40 |
"distance": float(prediction[y][x])
|