Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,105 +1,79 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import pipeline
|
4 |
-
from gtts import gTTS
|
5 |
-
from ultralytics import YOLO
|
6 |
-
from openai import OpenAI
|
7 |
import nltk
|
8 |
-
from
|
|
|
|
|
|
|
|
|
9 |
from PIL import Image
|
10 |
-
|
11 |
-
import
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Φόρτωση μοντέλων
|
18 |
-
yolo_model = YOLO("
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
-
|
23 |
-
def detect_objects(image):
|
24 |
-
image_path = "uploaded_image.jpg"
|
25 |
-
image.save(image_path)
|
26 |
-
|
27 |
results = yolo_model(image_path)
|
28 |
detected_objects = []
|
29 |
-
|
30 |
for r in results:
|
31 |
for box in r.boxes:
|
32 |
class_id = int(box.cls[0])
|
33 |
label = yolo_model.names[class_id]
|
34 |
detected_objects.append(label)
|
|
|
35 |
|
36 |
-
return ", ".join(detected_objects)
|
37 |
-
|
38 |
-
# 2. Story Generation
|
39 |
def generate_story(detected_objects):
|
40 |
-
story_prompt = f"Write a short story based on the following objects: {detected_objects}"
|
41 |
-
|
42 |
response = client.chat.completions.create(
|
43 |
model="gpt-4o-mini",
|
44 |
messages=[{"role": "user", "content": story_prompt}],
|
45 |
max_tokens=200
|
46 |
)
|
47 |
-
|
48 |
return response.choices[0].message.content
|
49 |
|
50 |
-
# 3. Summarization and Scene Splitting
|
51 |
def summarize_story(story):
|
52 |
summary = summarizer(story, max_length=100, do_sample=False)[0]['summary_text']
|
53 |
scenes = sent_tokenize(summary)
|
54 |
return scenes
|
55 |
|
56 |
-
|
57 |
-
|
|
|
58 |
images = []
|
59 |
-
for
|
60 |
-
|
61 |
-
image
|
62 |
-
image_path = f"scene_{idx + 1}.png"
|
63 |
-
image.save(image_path)
|
64 |
-
images.append(image_path)
|
65 |
-
|
66 |
return images
|
67 |
|
68 |
-
# 5. Text-to-Speech
|
69 |
def text_to_speech(story):
|
70 |
tts = gTTS(text=story, lang="en", slow=False)
|
71 |
-
|
72 |
-
tts.save(
|
73 |
-
return
|
74 |
-
|
75 |
-
# **Τελική Αυτοματοποιημένη Ροή**
|
76 |
-
def full_pipeline(image):
|
77 |
-
detected_objects = detect_objects(image)
|
78 |
-
story = generate_story(detected_objects)
|
79 |
-
scenes = summarize_story(story)
|
80 |
-
images = generate_images(scenes)
|
81 |
-
audio = text_to_speech(story)
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
#
|
86 |
-
demo = gr.
|
87 |
-
|
88 |
-
inputs=gr.Image(type="pil"),
|
89 |
-
outputs=[
|
90 |
-
gr.Textbox(label="Generated Story"),
|
91 |
-
gr.Textbox(label="Story Scenes"),
|
92 |
-
gr.Gallery(label="Generated Images"),
|
93 |
-
gr.Audio(label="Story Audio"),
|
94 |
-
],
|
95 |
-
title="AI-Powered Storytelling Assistant",
|
96 |
-
description="Upload an image, and the AI will detect objects, generate a story, create images, and narrate the story."
|
97 |
-
)
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
-
demo.launch()
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
|
|
|
|
|
|
|
|
4 |
import nltk
|
5 |
+
from openai import OpenAI
|
6 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
7 |
+
from diffusers import StableDiffusionPipeline
|
8 |
+
from ultralytics import YOLO
|
9 |
+
from gtts import gTTS
|
10 |
from PIL import Image
|
11 |
+
import numpy as np
|
12 |
+
from nltk.tokenize import sent_tokenize
|
13 |
+
from IPython.display import Audio
|
14 |
|
15 |
+
# Βεβαιωθείτε ότι το API Key υπάρχει
|
16 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
17 |
+
if not api_key:
|
18 |
+
raise ValueError("⚠️ OpenAI API Key is missing! Add it as a Secret in Hugging Face Spaces.")
|
19 |
+
|
20 |
+
# OpenAI Client
|
21 |
+
client = OpenAI(api_key=api_key)
|
22 |
|
23 |
# Φόρτωση μοντέλων
|
24 |
+
yolo_model = YOLO("yolov8s.pt")
|
25 |
+
stable_diffusion = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
26 |
+
nltk.download("punkt")
|
27 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
28 |
|
29 |
+
def detect_objects(image_path):
|
|
|
|
|
|
|
|
|
30 |
results = yolo_model(image_path)
|
31 |
detected_objects = []
|
|
|
32 |
for r in results:
|
33 |
for box in r.boxes:
|
34 |
class_id = int(box.cls[0])
|
35 |
label = yolo_model.names[class_id]
|
36 |
detected_objects.append(label)
|
37 |
+
return detected_objects
|
38 |
|
|
|
|
|
|
|
39 |
def generate_story(detected_objects):
|
40 |
+
story_prompt = f"Write a short story based on the following objects: {', '.join(detected_objects)}"
|
|
|
41 |
response = client.chat.completions.create(
|
42 |
model="gpt-4o-mini",
|
43 |
messages=[{"role": "user", "content": story_prompt}],
|
44 |
max_tokens=200
|
45 |
)
|
|
|
46 |
return response.choices[0].message.content
|
47 |
|
|
|
48 |
def summarize_story(story):
|
49 |
summary = summarizer(story, max_length=100, do_sample=False)[0]['summary_text']
|
50 |
scenes = sent_tokenize(summary)
|
51 |
return scenes
|
52 |
|
53 |
+
def generate_images(story):
|
54 |
+
scenes = summarize_story(story)
|
55 |
+
prompts = [f"Highly detailed, cinematic scene: {scene}, digital art, 4K, realistic lighting" for scene in scenes]
|
56 |
images = []
|
57 |
+
for prompt in prompts:
|
58 |
+
image = stable_diffusion(prompt).images[0]
|
59 |
+
images.append(image)
|
|
|
|
|
|
|
|
|
60 |
return images
|
61 |
|
|
|
62 |
def text_to_speech(story):
|
63 |
tts = gTTS(text=story, lang="en", slow=False)
|
64 |
+
audio_file_path = "story_audio.mp3"
|
65 |
+
tts.save(audio_file_path)
|
66 |
+
return audio_file_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
detect_interface = gr.Interface(fn=detect_objects, inputs="image", outputs="text", title="Object Detection")
|
69 |
+
story_interface = gr.Interface(fn=generate_story, inputs="text", outputs="text", title="Story Generation")
|
70 |
+
summary_interface = gr.Interface(fn=summarize_story, inputs="text", outputs="text", title="Story Summarization")
|
71 |
+
image_interface = gr.Interface(fn=generate_images, inputs="text", outputs="image", title="Image Generation")
|
72 |
+
audio_interface = gr.Interface(fn=text_to_speech, inputs="text", outputs="audio", title="Text to Speech")
|
73 |
|
74 |
+
# Συνδυασμός των interfaces σε ένα Gradio Tabbed Interface
|
75 |
+
demo = gr.TabbedInterface([detect_interface, story_interface, summary_interface, image_interface, audio_interface],
|
76 |
+
["Detect Objects", "Generate Story", "Summarize Story", "Generate Images", "Text to Speech"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
if __name__ == "__main__":
|
79 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|