tosin2013 commited on
Commit
2e63bd5
Β·
verified Β·
1 Parent(s): 63aabc0

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +15 -9
  2. app.py +328 -0
  3. fibonacci_price_targets.ipynb +0 -0
  4. requirements.txt +10 -0
README.md CHANGED
@@ -1,13 +1,19 @@
1
  ---
2
- title: Fibonacci Price Target
3
- emoji: πŸƒ
4
- colorFrom: blue
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 4.19.1
8
- app_file: app.py
9
- pinned: false
10
  license: apache-2.0
 
 
 
 
 
11
  ---
 
 
 
 
 
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
1
  ---
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
+ title: Fibonacci Price Targets
4
+ sdk: gradio
5
+ emoji: πŸ“ˆ
6
+ colorFrom: green
7
+ colorTo: purple
8
  ---
9
+ # Fibonacci Price Targets
10
+ This repository contains a Python script that calculates potential price targets for financial assets based on Fibonacci retracement and extension levels.
11
+
12
+ ## Key Features
13
+ * Flexible Inputs: The script allows users to specify the following:
14
 
15
+ * Asset's historical price data (e.g., OHLC data in a CSV format)
16
+ * The starting and ending points for the Fibonacci calculation
17
+ * Fibonacci retracement levels (e.g., 0.236, 0.382, 0.5, 0.618, 0.786)
18
+ * Fibonacci extension levels (e.g., 1.0, 1.382, 1.618, 2.618)
19
+ * Clear Visualization: The script generates a plot of the asset's price chart with the calculated Fibonacci levels overlaid, aiding in visual analysis.
app.py ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import pandas as pd
4
+ import math
5
+ import os
6
+ import matplotlib.pyplot as plt
7
+ from alpha_vantage.timeseries import TimeSeries
8
+
9
+ #symbol = 'NRDS'
10
+ #target_profit_price = 9.34
11
+ #interval = 'daily' # Specify the desired interval ('intraday', 'daily', 'weekly')
12
+ #start_date = '2023-01-01' # Specify the start date for historical data
13
+ #buy_signal = False
14
+
15
+ def get_current_stock_price(api_key, symbol):
16
+ url = f"https://finnhub.io/api/v1/quote?symbol={symbol}&token={api_key}"
17
+ response = requests.get(url)
18
+ print(response)
19
+ data = response.json()
20
+ return data['c'] # Current price
21
+
22
+ finnhub_api_key=os.environ['FINHUB_API_KEY']
23
+
24
+
25
+ def calculate_fibonacci_retracements(high, low):
26
+ # Adjust the Fibonacci ratios as needed
27
+ fibonacci_ratios = [0.236, 0.382, 0.5, 0.618, 0.786] # Example adjusted ratios
28
+ fibonacci_retracements = []
29
+ for i in range(40):
30
+ fibonacci_level = round((i+1)/(len(fibonacci_ratios)+1), 2) * fibonacci_ratios[i % len(fibonacci_ratios)]
31
+ fibonacci_retracements.append(fibonacci_level)
32
+ fibonacci_levels = {}
33
+ for r in fibonacci_retracements:
34
+ fibonacci_levels[f"{r * 100:.0f}%"] = round((low + high) - ((high - low) * r), 2)
35
+ return fibonacci_levels
36
+
37
+ from alpha_vantage.timeseries import TimeSeries
38
+
39
+ def fetch_historical_data(symbol, interval, output_size='compact', start_date=None):
40
+ # Replace with your AlphaVantage API key
41
+ api_key = os.environ['ALPHA_VANTAGE_API_KEY']
42
+
43
+ # Initialize the TimeSeries object
44
+ ts = TimeSeries(key=api_key, output_format='json')
45
+
46
+ # Map interval to the corresponding AlphaVantage function name
47
+ interval_mapping = {
48
+ 'intraday': 'TIME_SERIES_INTRADAY',
49
+ 'daily': 'TIME_SERIES_DAILY',
50
+ 'weekly': 'TIME_SERIES_WEEKLY'
51
+ }
52
+
53
+ if interval not in interval_mapping:
54
+ raise ValueError("Invalid interval. Supported intervals: 'intraday', 'daily', 'weekly'")
55
+
56
+ # Define the function name based on the interval
57
+ function_name = interval_mapping[interval]
58
+
59
+ if interval == 'intraday':
60
+ # Adjust the interval as needed
61
+ interval = '5min'
62
+
63
+ # Fetch historical data
64
+ if interval == 'daily':
65
+ historical_data, meta_data = ts.get_daily_adjusted(symbol=symbol, outputsize=output_size)
66
+ elif interval == 'weekly':
67
+ historical_data, meta_data = ts.get_weekly_adjusted(symbol=symbol)
68
+ else:
69
+ # For intraday, you can specify the interval (e.g., '5min')
70
+ historical_data, meta_data = ts.get_intraday(symbol=symbol, interval=interval, outputsize=output_size)
71
+
72
+ return historical_data
73
+
74
+ import numpy as np
75
+
76
+ def calculate_support_resistance_levels(symbol, interval='weekly', output_size='compact'):
77
+ # Fetch historical price data from AlphaVantage
78
+ historical_data = fetch_historical_data(symbol, interval, output_size)
79
+
80
+ # Extract closing prices from historical data
81
+ closing_prices = [float(data['4. close']) for data in historical_data.values()]
82
+ print("Display historyical data")
83
+ print(closing_prices)
84
+
85
+ # Calculate moving averages (e.g., 50-day and 200-day)
86
+ moving_average_50 = np.mean(closing_prices[-50:])
87
+ moving_average_200 = np.mean(closing_prices[-200:])
88
+
89
+ # Calculate support and resistance levels
90
+ # You can customize your logic for defining these levels based on moving averages
91
+ # For example, support could be defined as the 50-day moving average, and resistance could be the 200-day moving average
92
+ support_level = moving_average_50
93
+ resistance_level = moving_average_200
94
+
95
+ return support_level, resistance_level
96
+
97
+ def calculate_entry_exit_points(symbol, target_profit_price, risk_percentage, account_balance, start_date, buy_signal_str):
98
+ # Convert string inputs to correct data types
99
+ print("Debugging information:")
100
+
101
+ print("target_profit_price:", target_profit_price)
102
+ print("risk_percentage:", risk_percentage)
103
+ print("account_balance:", account_balance)
104
+
105
+ current_price = get_current_stock_price(finnhub_api_key, symbol)
106
+ print("current_price:", current_price)
107
+ target_profit_price = float(target_profit_price)
108
+ risk_percentage = float(risk_percentage)
109
+ account_balance = float(account_balance)
110
+ buy_signal = buy_signal_str == "Buy"
111
+ print("buy_signal:", buy_signal)
112
+
113
+
114
+
115
+ # Fetch swing high and swing low using symbol, interval, and start date
116
+ swing_high, swing_low = get_swing_high_low(symbol, 'weekly', start_date)
117
+
118
+ # Calculate Fibonacci levels
119
+ fibonacci_levels = calculate_fibonacci_retracements(swing_high, swing_low)
120
+
121
+ # Calculate support and resistance levels
122
+ support_level, resistance_level = calculate_support_resistance_levels(symbol, 'weekly', start_date)
123
+
124
+ # Calculate entry and stop loss based on support and resistance
125
+ entry_point, stop_loss = calculate_entry_stop_loss(support_level, resistance_level, buy_signal)
126
+
127
+ # Calculate position size based on risk percentage and account balance
128
+ position_size = (risk_percentage / 100) * account_balance
129
+
130
+ # Calculate take profit based on Fibonacci levels and target price
131
+ take_profit, closest_levels = calculate_take_profit(target_profit_price, fibonacci_levels, buy_signal)
132
+
133
+ # Calculate profit in dollars for take profit and stop loss
134
+ if buy_signal:
135
+ profit_take_profit = (take_profit - entry_point) * position_size
136
+ profit_stop_loss = (entry_point - stop_loss) * position_size
137
+ else:
138
+ profit_take_profit = (entry_point - take_profit) * position_size
139
+ profit_stop_loss = (stop_loss - entry_point) * position_size
140
+
141
+ # Determine buy/sell flag
142
+ buy_sell_flag = "Buy" if buy_signal else "Sell"
143
+
144
+ return {
145
+ 'Ticker': symbol,
146
+ 'entry': entry_point,
147
+ 'stop_loss': stop_loss,
148
+ 'take_profit': take_profit,
149
+ 'position_size': position_size,
150
+ 'profit_take_profit': profit_take_profit,
151
+ 'profit_stop_loss': profit_stop_loss,
152
+ 'fibonacci_levels': fibonacci_levels,
153
+ 'closest_levels': closest_levels,
154
+ 'buy_sell_flag': buy_sell_flag
155
+ }
156
+
157
+ # Note: You would also need to adjust or create the calculate_profit function to handle profit calculation.
158
+
159
+ def calculate_entry_stop_loss(support_level, resistance_level, buy_signal):
160
+ # Calculate entry and stop loss based on support and resistance
161
+ if buy_signal:
162
+ entry_point = support_level
163
+ stop_loss = entry_point - (entry_point * 0.02) # Adjust the percentage as needed
164
+ else:
165
+ entry_point = resistance_level
166
+ stop_loss = entry_point + (entry_point * 0.02) # Adjust the percentage as needed
167
+ return entry_point, stop_loss
168
+
169
+ def calculate_take_profit(target_price, fibonacci_levels, buy_signal):
170
+ # Calculate take profit based on Fibonacci levels and target price
171
+ if buy_signal:
172
+ closest_levels = {k: v for k, v in fibonacci_levels.items() if v > target_price}
173
+ else:
174
+ closest_levels = {k: v for k, v in fibonacci_levels.items() if v < target_price}
175
+
176
+ take_profit_fibonacci_level = max(closest_levels.keys())
177
+ take_profit = closest_levels[take_profit_fibonacci_level]
178
+
179
+ return take_profit, closest_levels
180
+
181
+ def get_swing_high_low(symbol, interval, start_date):
182
+ print(symbol, interval, start_date)
183
+ # Fetch historical price data from AlphaVantage
184
+ historical_data = fetch_historical_data(symbol,interval, start_date=start_date)
185
+ print("prining historical data")
186
+ print(historical_data)
187
+
188
+ # Initialize variables to store swing high and swing low prices
189
+ swing_high = None
190
+ swing_low = None
191
+
192
+ # Iterate through historical data to find swing high and swing low
193
+ for date, price_data in historical_data.items():
194
+ high_price = float(price_data['2. high'])
195
+ low_price = float(price_data['3. low'])
196
+
197
+ if swing_high is None or high_price > swing_high:
198
+ swing_high = high_price
199
+
200
+ if swing_low is None or low_price < swing_low:
201
+ swing_low = low_price
202
+
203
+ return swing_high, swing_low
204
+
205
+
206
+ import gradio as gr
207
+
208
+ def interface_wrapper(symbol, target_profit_price, risk_percentage, account_balance, start_date, buy_signal):
209
+ # Your function logic here
210
+
211
+ # Dummy return for demonstration purposes
212
+ return {
213
+ "Entry Point": 100,
214
+ "Stop Loss": 90,
215
+ "Take Profit": 110,
216
+ "Position Size": 1000,
217
+ "Profit (Take Profit)": 100,
218
+ "Profit (Stop Loss)": -100,
219
+ "Fibonacci Levels": {"38.2%": 95, "61.8%": 105},
220
+ "Buy/Sell Flag": buy_signal
221
+ }
222
+
223
+ # Ensure inputs to Gradio interface are in the correct order and use the correct components
224
+ demo = gr.Interface(
225
+ fn=calculate_entry_exit_points,
226
+ inputs=[
227
+ gr.Textbox(label="Stock Symbol"), # symbol
228
+ gr.Number(label="Target Profit Price"), # target_profit_price
229
+ gr.Slider(label="Risk Percentage", minimum=0, maximum=100, step=0.1), # risk_percentage, with default at 2%
230
+ gr.Number(label="Account Balance"), # account_balance, with default
231
+ gr.Textbox(label="Start Date", placeholder="YYYY-MM-DD"), # start_date, with default
232
+ gr.Radio(choices=["Buy", "Sell"], label="Buy/Sell Signal") # buy_signal, with default
233
+ ],
234
+ outputs=gr.JSON(label="Results"),
235
+ description="Enter the necessary information to calculate entry and exit points for stock trading."
236
+ )
237
+
238
+ demo.launch(share=True) # share=True to create a public link
239
+
240
+
241
+ def plot_trade(entry, stop_loss, take_profit, fibonacci_json):
242
+ # Parse the Fibonacci levels from JSON
243
+ fibonacci_levels = json.loads(fibonacci_json)
244
+
245
+ # Prepare data for plotting
246
+ fib_levels = list(fibonacci_levels.values())
247
+ fib_labels = list(fibonacci_levels.keys())
248
+
249
+ # Initialize the plot
250
+ plt.figure(figsize=(10, 6))
251
+ plt.title("Trade Setup with Fibonacci Levels")
252
+
253
+ # Plot Fibonacci levels
254
+ for i, level in enumerate(fib_levels):
255
+ plt.axhline(y=level, linestyle='--', color='gray', alpha=0.5)
256
+ plt.text(len(fib_labels) + 1, level, f"{fib_labels[i]}: {level}", verticalalignment='center')
257
+
258
+ # Plot entry, stop_loss, and take_profit
259
+ plt.axhline(y=entry, color='blue', label='Entry')
260
+ plt.axhline(y=stop_loss, color='red', label='Stop Loss')
261
+ plt.axhline(y=take_profit, color='green', label='Take Profit')
262
+
263
+ plt.legend()
264
+ plt.xlabel("Fibonacci Levels")
265
+ plt.ylabel("Price")
266
+ plt.tight_layout()
267
+
268
+ # Save the plot to a temporary file and return its path
269
+ plt_path = "/mnt/data/trade_setup.png"
270
+ plt.savefig(plt_path)
271
+ plt.close()
272
+
273
+ return plt_path
274
+
275
+ # Example usage
276
+ #current_price = get_current_stock_price(finnhub_api_key, symbol)
277
+ # start_date = '2023-01-01'
278
+ # swing_high, swing_low = get_swing_high_low(symbol, 'weekly', start_date)
279
+ # print(f"Swing High: {swing_high}, Swing Low: {swing_low}")
280
+ # risk_percentage = 1finnhub_api_key
281
+ # account_balance = 10000
282
+
283
+ # entry_exit_points = calculate_entry_exit_points(current_price=current_price, target_price=target_profit_price, risk_percentage=1, account_balance=10000, swing_high=swing_high, swing_low=swing_low,buy_signal=buy_signal)
284
+
285
+ # Printing the output
286
+ # print("Current Price:", current_price)
287
+ # print("Price Target:", target_profit_price)
288
+ # print("Entry Price:", entry_exit_points['entry'])
289
+ # print("Stop Loss:", entry_exit_points['stop_loss'])
290
+ # print("Take Profit:", entry_exit_points['take_profit'])
291
+ # print("Position Size:", entry_exit_points['position_size'])
292
+ # print("Profit (Take Profit): $", entry_exit_points['profit_take_profit'])
293
+ # print("Profit (Stop Loss): $", entry_exit_points['profit_stop_loss'])
294
+ # print("Fibonacci Levels:", entry_exit_points['fibonacci_levels'])
295
+ # Print the closest levels and their associated prices for debugging
296
+ # if buy_signal:
297
+ # print(f"Closest levels for Buy (targeting {target_profit_price}): {entry_exit_points['closest_levels']}")
298
+ # else:
299
+ # print(f"Closest levels for Sell (targeting {target_profit_price}): {entry_exit_points['closest_levels']}")
300
+ # print("Buy/Sell Flag:", entry_exit_points['buy_sell_flag'])
301
+
302
+
303
+ # Print the structure of entry_exit_points['closest_levels']
304
+
305
+ # Extract levels and prices from entry_exit_points['closest_levels'] dictionary
306
+ # levels = list(entry_exit_points['closest_levels'].keys())
307
+ # prices = list(entry_exit_points['closest_levels'].values())
308
+
309
+ # Create a bar chart
310
+ # plt.figure(figsize=(10, 6))
311
+ # plt.bar(levels, prices, color='blue' if buy_signal else 'red')
312
+ # plt.xlabel("Fibonacci Levels")
313
+ # plt.ylabel("Price")
314
+ # plt.title("Average Price at Fibonacci Levels")
315
+ # plt.xticks(rotation=45)
316
+
317
+ # Show the chart
318
+ # plt.show()
319
+
320
+ # print(entry_exit_points['closest_levels'])
321
+ # for key, value in entry_exit_points['closest_levels'].items():
322
+ # print(f"Property: {key}, Value: {value}")
323
+ # Check if it's a buy or sell signal and adjust the title accordingly
324
+ # if buy_signal:
325
+ # title = f"Closest Levels for Buy (targeting {target_profit_price})"
326
+ # else:
327
+ # title = f"Closest Levels for Sell (targeting {target_profit_price})"
328
+
fibonacci_price_targets.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy
2
+ pandas
3
+ pandas_datareader
4
+ matplotlib
5
+ scipy
6
+ seaborn
7
+ alpha_vantage
8
+ gradio
9
+ gradio_client
10
+ boto3